机器学习习题(3)

这篇博客介绍了机器学习的四道习题,涉及PRF值的概念及其评价,判别模型与生成模型的区分,概率论中的PMF, PDF, CDF概念,以及SPSS数据整理功能。" 138982957,7337247,对抗样本攻击与防御:计算机视觉模型的安全策略,"['深度学习', '神经网络', '图像识别', '安全', '对抗性学习']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 前言

这一次我们只有4道新题,有一道题目我们之前已经做过了。就不再赘述。

2. 习题1(PRF值)

下面有关分类算法的准确率,召回率,F1 值的描述,错误的是?

A.准确率是检索出相关文档数与检索出的文档总数的比率,衡量的是检索系统的查准率

B.召回率是指检索出的相关文档数和文档库中所有的相关文档数的比率,衡量的是检索系统的查全率

C.正确率、召回率和 F 值取值都在0和1之间,数值越接近0,查准率或查全率就越高

D.为了解决准确率和召回率冲突问题,引入了F1分数

正确答案:C

解析:

对于二类分类问题常用的评价指标是精准度(precision)与召回率(recall)。通常以关注的类为正类,其他类为负类,分类器在测试数据集上的预测或正确或不正确,4种情况出现的总数分别记作:

TP——将正类预测为正类数
FN——将正类预测为负类数
FP——将负类预测为正类数
TN——将负类预测为负类数

由此:

精准率定义为:P = TP / (TP + 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI让世界更懂你

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值