238. 除自身以外数组的乘积

题目

给你一个整数数组 nums,返回数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积。

题目数据保证数组 nums 之中任意元素的全部前缀元素和后缀的乘积都在 32 位整数范围内。

请不要使用除法,且在 O(n) 时间复杂度内完成此题。

示例 1:

输入: nums = [1,2,3,4]
输出: [24,12,8,6]

示例 2:

输入: nums = [-1,1,0,-3,3]
输出: [0,0,9,0,0]

提示:

  • 2 <= nums.length <= 10^5
  • -30 <= nums[i] <= 30
  • 保证数组 nums 之中任意元素的全部前缀元素和后缀的乘积都在 32 位整数范围内

进阶:你可以在 O(1) 的额外空间复杂度内完成这个题目吗?(出于对空间复杂度分析的目的,输出数组不被视为额外空间。)

代码

完整代码

/**
 * Note: The returned array must be malloced, assume caller calls free().
 */
int* productExceptSelf(int* nums, int numsSize, int* returnSize) {
    int* result = (int*)calloc(numsSize, sizeof(int));
    int* leftMult = (int*)calloc(numsSize, sizeof(int));
    int* rightMult = (int*)calloc(numsSize, sizeof(int));
    *returnSize = numsSize;
    leftMult[0] = 1;
    rightMult[numsSize-1] = 1;
    for (int i = 1; i < numsSize; i++)
    {
        leftMult[i] = leftMult[i-1] * nums[i-1];
        rightMult[numsSize - 1 - i] = rightMult[numsSize - i] * nums[numsSize - i];
    }
    for (int i = 0; i < numsSize; i++)
    {
        result[i] = leftMult[i]*rightMult[i];
    }
    free(leftMult);
    free(rightMult);
    return result;
}

思路分析

这套代码用了前缀积和后缀积的方法。

  1. 初始化两个数组 leftMultrightMult,分别存储从左到右的前缀积和从右到左的后缀积。
  2. 第一次遍历计算 leftMult 数组和 rightMult 数组。
  3. 最后一次遍历结合 leftMultrightMult 的值计算出结果 result

拆解分析

  1. 初始化及内存分配
int* result = (int*)calloc(numsSize, sizeof(int));
int* leftMult = (int*)calloc(numsSize, sizeof(int));
int* rightMult = (int*)calloc(numsSize, sizeof(int));
*returnSize = numsSize;
leftMult[0] = 1;
rightMult[numsSize-1] = 1;

分配结果数组和前缀、后缀数组的内存,并初始化第一个前缀和最后一个后缀的值为1。

  1. 计算前缀积数组
for (int i = 1; i < numsSize; i++)
{
    leftMult[i] = leftMult[i-1] * nums[i-1];
}

从左到右遍历数组,计算每个位置的前缀积。

  1. 计算后缀积数组
for (int i = 1; i < numsSize; i++)
{
    rightMult[numsSize - 1 - i] = rightMult[numsSize - i] * nums[numsSize - i];
}

从右到左遍历数组,计算每个位置的后缀积。

  1. 计算结果数组
for (int i = 0; i < numsSize; i++)
{
    result[i] = leftMult[i]*rightMult[i];
}

结合前缀积和后缀积,计算每个位置的结果。

  1. 释放内存
free(leftMult);
free(rightMult);

释放不再需要的内存。

复杂度分析

  • 时间复杂度:O(n),因为有两个独立的遍历操作,每次操作的时间复杂度都是 O(n)。
  • 空间复杂度:O(n),因为使用了两个额外的数组 leftMultrightMult

一题多解

单数组解法

完整代码

int* productExceptSelf(int* nums, int numsSize, int* returnSize) {
    int* result = (int*)calloc(numsSize, sizeof(int));
    *returnSize = numsSize;

    result[0] = 1;
    for (int i = 1; i < numsSize; i++) {
        result[i] = result[i - 1] * nums[i - 1];
    }

    int rightMult = 1;
    for (int i = numsSize - 1; i >= 0; i--) {
        result[i] = result[i] * rightMult;
        rightMult *= nums[i];
    }

    return result;
}

思路分析

这套代码用了前缀积和后缀积的优化方法

  1. 第一次遍历时计算前缀积并存储在结果数组 result 中。
  2. 第二次遍历时从右到左计算后缀积,并直接更新结果数组 result

拆解分析

  1. 初始化及内存分配
int* result = (int*)calloc(numsSize, sizeof(int));
*returnSize = numsSize;
result[0] = 1;

分配结果数组的内存,并初始化第一个前缀值为1。

  1. 计算前缀积
for (int i = 1; i < numsSize; i++) {
    result[i] = result[i - 1] * nums[i - 1];
}

从左到右遍历数组,计算每个位置的前缀积并存储在结果数组中。

  1. 计算后缀积并更新结果数组
int rightMult = 1;
for (int i = numsSize - 1; i >= 0; i--) {
    result[i] = result[i] * rightMult;
    rightMult *= nums[i];
}

从右到左遍历数组,计算每个位置的后缀积,并直接更新结果数组。

复杂度分析

  • 时间复杂度:O(n),因为有两个独立的遍历操作,每次操作的时间复杂度都是 O(n)。
  • 空间复杂度:O(1),因为只使用了一个额外的变量 rightMult,而输出数组不计入空间复杂度。

结果

前后缀分别申请:

结果

复用result数组:

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值