1、Dropout层应该加在什么地方
做分类的时候,Dropout 层一般加在全连接层后(输出层的全连接层后不用drop了),防止过拟合,提升模型泛化能力,而很少见到卷积层后接Dropout (原因主要是 卷积参数少,不易过拟合)
2、Dropout层作用分析
2.1、参考文献
- Dropout是Srivastava等人在2014年的一篇论文中提出的一种针对神经网络模型的
正则化方法Dropout: A Simple Way to Prevent Neural Networks from Overfitting。 - 首先是一篇外文博客(他的一系列写的都很好):Dropout Regularization For Neural Networks
- 也有中文翻译版的:基于Keras/Python的深度学习模型Dropout正则项
本文介绍了Dropout层在神经网络中的应用位置及其作用,详细阐述了在MXNet中如何使用官方自带的Dropout模块,并探讨了自定义实现Dropout函数的方法,同时展示了在Gluon中如何集成Dropout到MLP模型。
订阅专栏 解锁全文
4115

被折叠的 条评论
为什么被折叠?



