点乘/内积/数量积;叉乘/向量积;矩阵乘法;哈达马积;克罗内克积;卷积

本文详细介绍了向量的点乘和叉乘,以及克罗内克积这一张量积的特殊形式在矩阵运算中的应用。点乘表达了向量之间的角度关系,叉乘则生成了一个新的向量,其模长等于原向量构成的平行四边形面积。克罗内克积则为不同尺寸矩阵间的运算提供了可能,常用于构建复杂的矩阵结构。此外,还提及了卷积在深度学习中的角色,即通过卷积核对特征层进行扫描和乘积累加,提取图像特征。
摘要由CSDN通过智能技术生成

1、 符号解释

名称符号Latex运算应用意义
点乘/内积/数量积 ⋅ ⋅ ∙ \bullet \cdot或\bullet a ⃗ ∙ b ⃗ = x 1 x 2 + y 1 y 2 \vec{a} \bullet \vec{b}=x_{1}x_{2}+y_{1}y_{2} a b =x1x2+y1y2三角形余弦角度一个向量与另一个向量方向上投影的长度
叉乘/向量积 × \times ×\times向量方向是垂直于向量A,B组成的平面叉乘结果是一个向量,向量模长是向量A,B组成平行四边形的面积;
矩阵乘法方程组各类需要求解方程组的问题
哈达马积(Hadamard product) ∘ \circ ⊙ \odot \circ 或 \odot ( A ∘ B ) i j = ( A ⊙ B ) i j = ( A ) i j ( B ) i j (A\circ B)_{ij}=(A\odot B)_{ij}= (A)_{ij}(B)_{ij} ABij=ABij=(A)ij(B)ij对应位置相乘Kronecker Product两矩阵维度相同时的简化形式
克罗内克积(Kronecker Product)(张量积的特殊形式) ⊗ \otimes \otimes任意两个矩阵相乘矩阵分块相乘
卷积** ( f ∗ g ) ( t ) = ∫ − ∞ ∞ f ( τ ) g ( t − τ ) d τ (f*g)(t)=\int\limits_{-\infty }^{\infty } f(\tau )g(t-\tau)d\tau (fg)(t)=f(τ)g(tτ)dτ深度学习中张量的卷积操作卷积核在特征层移动并对应位相乘表征函数 f 与经过翻转和平移的 g 的乘积函数所围成的曲边梯形的面积

2、运算操作

2.1 叉乘 / 向量积

在这里插入图片描述

2.2 克罗内克积(Kronecker Product)(张量积的特殊形式)

克罗内克积是两个任意大小的矩阵间的运算。克罗内克积是张量积的特殊形式
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值