常见微分方程求解小结

这篇总结是针对同济版《高等数学》上册第七章微分方程的部分内容,主要目的是为了便于我自己以后的查找调用,因而省略了大部分推导过程,只是一个结论的总结。

这份总结分为三部分:齐次微分方程,二阶常系数非齐次线性微分方程以及欧拉方程。

齐次微分方程

  • 针对如下方程1 d y d x = a x + b y + c a 1 x + b 1 y + c 1 \frac{{dy}}{{dx}} = \frac{{ax + by + c}}{{{a_1}x + {b_1}y + {c_1}}} dxdy=a1x+b1y+c1ax+by+c
    先做代换: x = X + h y = Y + k x = X + h\\y = Y + k x=X+hy=Y+k
    其中和 h , k h,k h,k是常数
    对方程组 { a h + b k + c = 0 a 1 h + b 1 k + c 1 = 0 \begin{cases}ah+bk+c=0\\a_1h+b_1k+c_1=0\end{cases} {ah+bk+c=0a1h+b1k+c1=0
    进行研究可以得到两种情况:
    第一种情况:当 a 1 a ≠ b 1 b \frac{a_1}{a} \not= \frac{b_1}{b} aa1=bb1时,可以由方程组确定常数 h , k h,k h,k,进而得到化简后的微分方程: d Y d X = a X + b Y a 1 X + b 1 Y \frac{dY}{dX} = \frac{aX+bY}{a_1X+b_1Y} dXdY=a1X+b1YaX+bY到了这一步便比较常规了便不再继续下去了。
    第二种情况:当 a 1 a = b 1 b \frac{a_1}{a}=\frac{b_1}{b} aa1=bb1时,令 a 1 a = b 1 b = λ \frac{a_1}{a}=\frac{b_1}{b}=\lambda aa1=bb1=λ,从而微分方程可以简化为: d y d x = a x + b y + c λ ( a x + b y ) + c 1 \frac{dy}{dx}=\frac{ax+by+c}{\lambda(ax+by)+c_1} dxdy=λ(ax+by)+c1ax+by+c再引入新变量 v = a x + b y v=ax+by v=ax+by,方程进一步整理得: 1 b ( d v d x − a ) = v + c λ v + c 1 \frac{1}{b}(\frac{dv}{dx}-a)=\frac{v+c}{\lambda v+c_1} b1(dxdva)=λv+c1v+c这属于可分离变量的方程,便不再继续下去了。
    上述的方法可以应用于更一般的方程: d y d x = f ( a x + b y + c a 1 x + b 1 y + c 1 ) \frac{dy}{dx}=f(\frac{ax+by+c}{a_1x+b_1y+c_1}) dxdy=f(a1x+b1y+c1ax+by+c)

  • 针对方程2 d y d x + P ( x ) y = Q ( x ) \frac{dy}{dx}+P(x)y=Q(x) dxdy+P(x)y=Q(x)
    其通解为: y = e − ∫ P ( x ) d x ( ∫ Q ( x ) e ∫ P ( x ) d x d x + C ) y=e^{-\int P(x)dx}(\int Q(x)e^{\int P(x)dx}dx+C) y=eP(x)dx(Q(x)eP(x)dxdx+C)

  • 针对伯努利方程 d y d x + P ( x ) y = y n ( n ≠ 0 , 1 ) \frac{dy}{dx}+P(x)y=y^n\quad(n\not= 0,1) dxdy+P(x)y=yn(n=0,1)
    引入新变量 z = y 1 − n z=y^{1-n} z=y1n
    方程可化简为: d z d x + ( 1 − n ) P ( x ) z = ( 1 − n ) Q ( x ) \frac{dz}{dx}+(1-n)P(x)z=(1-n)Q(x) dxdz+(1n)P(x)z=(1n)Q(x)
    化简得到的方程可直接套用公式求解。

  • 针对方程3 y ′ ′ + p y ′ + q y = 0 y^{''}+py^{'}+qy=0 y+py+qy=0
    其对应的特征方程为: r 2 + p r + q = 0 r^{2}+pr+q=0 r2+pr+q=0
    可以得到两个根 r 1 , r 2 r_1,r_2 r1,r2,以下就这两个根的情况进行讨论:
    情况一:当 r 1 = r 2 r_1=r_2 r1=r2时,方程的通解为: y = C 1 e r 1 x + C 2 e r 2 x y=C_1e^{r_1 x}+C_2e^{r_2x} y=C1er1x+C2er2x
    情况二:当 r 1 = r 2 r_1=r_2 r1=r2时,方程的通解为: y = ( C 1 + C 2 x ) e r 1 x y=(C_1+C_2x)e^{r_1x} y=(C1+C2x)er1x
    情况三:当 r 1 r_1 r1 r 2 r_2 r2是一对共轭复根时,即 r 1 , 2 = α ± i β r_{1,2}=\alpha \pm i\beta r1,2=α±iβ
    方程的通解为: y = e α x ( C 1 cos ⁡ β x + C 2 cos ⁡ β x ) y=e^{\alpha x}(C_1\cos\beta x+C_2\cos\beta x) y=eαx(C1cosβx+C2cosβx)将上述结论再推广到n阶常系数齐次线性微分方程 y n + P 1 y n − 1 + ⋯ + P n − 1 y ′ + P n y = 0 y^{n}+P_1 y^{n-1}+\cdots+P_{n-1}y^{'}+P_ny=0 yn+P1yn1++Pn1y+Pny=0
    其对应的特征方程为: r n + P 1 r n − 1 + ⋯ + P n − 1 r + P n = 0 r^n+P_1r^{n-1}+\cdots+P_{n-1}r+P_{n}=0 rn+P1rn1++Pn1r+Pn=0对于这个方程可以解出n个根来,仿照前面我们基于这些根来写出微分方程通解中的对应项:
    单实根r,对应于: C e r x Ce^{rx} Cerx
    一对单复根 r 1 , 2 = α + i β r_{1,2}=\alpha +i\beta r1,2=α+iβ,对应于: e α x ( C 1 cos ⁡ β x + C 2 sin ⁡ β x ) e^{\alpha x}(C_1\cos\beta x+C_2\sin\beta x) eαx(C1cosβx+C2sinβx)
    k重实根r,对应于: ( C 1 + C 2 x + ⋯ + C k x k − 1 ) e r x (C_1+C_2 x+\cdots+C_k x^{k-1})e^{rx} (C1+C2x++Ckxk1)erx
    一对k重复根 r 1 , 2 = α + i β r_{1,2}=\alpha +i\beta r1,2=α+iβ,对应于: e α x ( ( C 1 + C 2 x + ⋯ + C k x k − 1 ) cos ⁡ β x + ( D 1 + D 2 x + ⋯ + D k x k − 1 ) sin ⁡ β x ) e^{\alpha x}((C_1+C_2 x+\cdots+C_k x^{k-1}) \cos\beta x+(D_1+D_2 x+\cdots+D_k x^{k-1}) \sin\beta x) eαx((C1+C2x++Ckxk1)cosβx+(D1+D2x++Dkxk1)sinβx)
    将上述解加起来便是对应n阶常系数齐次线性微分方程的通解。

二阶常系数非齐次线性微分方程

二阶常系数非齐次线性微分方程的一般形式: y ′ ′ + p y ′ + q y = f ( x ) y^{''}+py^{'}+qy=f(x) y+py+qy=f(x)
下面仅就 f ( x ) f(x) f(x)的两种形式进行讨论;

  • f ( x ) = e λ x P m ( x ) f(x)=e^{\lambda x}P_{m}(x) f(x)=eλxPm(x)
    P m ( x ) 是 x 的 m 次 多 项 式 : P_{m}(x)是x的m次多项式: Pm(x)xm:
    P m ( x ) = a 0 x m + a 1 x m − 1 + ⋯ + a n − 1 x + a m P_{m}(x)=a_{0}x^{m}+a_{1}x^{m-1}+\cdots+a_{n-1}x+a_{m} Pm(x)=a0xm+a1xm1++an1x+am
    此时方程的一个特解可以写成:
    y ∗ = x k Q m ( x ) e λ x y^{*}=x^{k}Q_{m}(x)e^{\lambda x} y=xkQm(x)eλx
    其中 Q m ( x ) Q_{m}(x) Qm(x)是与 P m ( x ) P_{m}(x) Pm(x)同次的多项式, Q m ( x ) Q_{m}(x) Qm(x)中的各项系数可以通过将特解 y ∗ y^{*} y代入原方程求得;
    k k k则是按照 λ \lambda λ是不是特征方程的根、是单根、是重根依次取0、1、2,推广至 n n n阶的话, k k k便是特征方程含根 λ \lambda λ的重复次数
    此时方程的通解可以写成上述特解与对应齐次方程的通解的和。

  • f ( x ) = e λ x [ P l ( 1 ) cos ⁡ ( ω x ) + P n ( 2 ) sin ⁡ ( ω x ) ] f(x)=e^{\lambda x}\big[P_{l}^{(1)}\cos(\omega x)+P_{n}^{(2)}\sin(\omega x)\big] f(x)=eλx[Pl(1)cos(ωx)+Pn(2)sin(ωx)]

    其中 P l ( 1 ) P_{l}^{(1)} Pl(1) P n ( 2 ) P_{n}^{(2)} Pn(2)分别是x的l次多项式和n次多项式;
    此时方程的一个特解为: y ∗ = x k e λ x [ R m ( 1 ) cos ⁡ ( ω x ) + R m ( 2 ) sin ⁡ ( ω x ) ] y^*=x^ke^{\lambda x}\big[R_{m}^{(1)}\cos(\omega x)+R_{m}^{(2)}\sin(\omega x)\big] y=xkeλx[Rm(1)cos(ωx)+Rm(2)sin(ωx)]
    其中 R m ( 1 ) R_{m}^{(1)} Rm(1) R m ( 2 ) R_{m}^{(2)} Rm(2) n n n次多项式, m = m a x { l , n } m=max\{l,n\} m=max{l,n},而 k k k λ + i ω \lambda+i\omega λ+iω(或者 λ − i ω \lambda-i\omega λiω)是不是特征方程的根、单根依次取0,1,推广至 n n n阶的话, k k k便是特征方程中含根 λ + i ω \lambda+i\omega λ+iω(或者 λ − i ω \lambda-i\omega λiω)的重复次数;
    此时方程的通解可以写成上述特解与对应齐次方程的通解的和。

欧拉方程

\qquad 欧拉方程的一般形式:
x n y n + p 1 x n − 1 y ( n − 1 ) + ⋯ + p n − 1 x y ′ + p n y = f ( x ) x^ny^{n}+p_1x^{n-1}y^{(n-1)}+\cdots+p_{n-1}xy{'}+p_ny=f(x) xnyn+p1xn1y(n1)++pn1xy+pny=f(x)
\qquad 其中 p 1 , p 2 , ⋯   , p n p_1,p_2,\cdots,p_n p1,p2,,pn是常数;
\qquad 做代换: x = e t 或 者 t = l n x x=e^t\quad或者\quad t=lnx x=ett=lnx
\qquad 基于上述代换可以将欧拉方程换换成一个以 t t t为自变量的常系数线性微分方程,需要注意的是上述变换仅是在 x > 0 x>0 x>0的范围内的求解,对于 x < 0 x<0 x<0范围内的求解,则是做下面的变换: x = − e t 或 者 t = l n ( − x ) x=-e^t\quad 或者\quad t=ln(-x) x=ett=ln(x)

同济版高数上册第七章

  • 6
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值