Match Filter for PAM Signal

Match Filter for PAM Signal

1. 接收信号 e ( t ) e(t) e(t)
在这里插入图片描述
Tx端发送信号为:
s ( t ) = ∑ k = − ∞ ∞ a m [ k ] g ( t − k T ) (1) s(t)=\sum_{k=-\infty}^{\infty}a_{m[k]}g(t-kT) \tag{1} s(t)=k=am[k]g(tkT)(1)
RX端接收信号(暂不考虑衰减):
e ( t ) = e j φ ⋅ ( ∑ k = − ∞ ∞ a m [ k ] g ( t − k T − Δ T ) ) + n ( t ) (2) e(t)=e^{j\varphi}\cdot (\sum_{k=-\infty}^{\infty}a_{m[k]}g(t-kT-\Delta T))+n(t) \tag{2} e(t)=ejφ(k=am[k]g(tkTΔT))+n(t)(2)
其中 e j φ e^{j\varphi} ejφ为接收端将调制信号解调到基频时,由于发送端与接收端晶振器细微差距而产生的相差, Δ T \Delta T ΔT则为信号经过信道传输后的时延, n ( t ) n(t) n(t)则为高斯白噪声。

现在我们希望在接收端根据接收信号 e ( t ) e(t) e(t),恢复出原始二进制码流,具体流程如下图。本文只对接收端Match Filter设计进行讨论。
在这里插入图片描述
2. Optimal detection of impulse signal g ( t ) g(t) g(t):
为简化分析流程,使用脉冲信号 g ( t ) g(t) g(t)取代原有的发送信号 s ( t ) s(t) s(t)
在这里插入图片描述
接收信号在 t = T v t=T_v t=Tv时的信噪比为:
SNR d = ∣ d ( T v ) ~ ∣ 2 σ n d 2 (3) \text{SNR}_d=\frac{|\tilde{d(T_v)}|^2}{\sigma_{n_d}^2} \tag{3} SNRd=σnd2d(Tv)~2(3)
Match Filter设计的核心思路就是使得(3)达到最大值。且必须注意的是,Match filter需要接收端事先知道发送信号作为先验信息(局限性)。
设计矛盾点:
a)信号完整性:
d ~ ( t ) = g ( t ) ∗ h E ( t ) (4) \tilde{d}(t)=g(t)*h_E(t) \tag{4} d~(t)=g(t)hE(t)(4)
d ~ ( T v ) = g ( t ) ∗ h E ( t ) ∣ t = T v (5) \tilde{d}(T_v)=g(t)*h_E(t)|_{t=T_v} \tag{5} d~(Tv)=g(t)hE(t)t=Tv(5)
由上式可知, H E ( f ) H_E(f) HE(f)设计的带宽越大,约不容易导致信号被截断,从而导致信号失真。
在这里插入图片描述

b)引入噪声:
σ n d 2 = N o 2 ∫ − ∞ ∞ ∣ H E ( f ) ∣ 2 d f (6) \sigma_{n_d}^2=\frac{N_o}{2}\int_{-\infty}^{\infty}|H_E(f)|^2df \tag{6} σnd2=2NoHE(f)2df(6)
由此可知, H E ( f ) H_E(f) HE(f)设计的带宽越大,引入的噪声越多。
在这里插入图片描述
因此 H E ( f ) H_E(f) HE(f)设计需要综合考虑这两个因素:
在这里插入图片描述

SNR d = ∣ d ~ ( T V ) ∣ 2 σ n d 2 = ∣ ∫ − ∞ + ∞ G ( f ) H E ( f ) e j 2 π f T V   d f ∣ 2 N 0 2 ∫ − ∞ + ∞ ∣ H E ( f ) ∣ 2   d f (7) \text{SNR}_d = \frac{|\tilde{d}(T_V)|^2}{\sigma_{n_d}^2} = \frac{\left| \int_{-\infty}^{+\infty} G(f) H_E(f) e^{j2\pi f T_V} \, df \right|^2}{\frac{N_0}{2} \int_{-\infty}^{+\infty} |H_E(f)|^2 \, df} \tag{7} SNRd=σnd2d~(TV)2=2N0+HE(f)2df +G(f)HE(f)ej2πfTVdf 2(7)
∣ d ~ ( T V ) ∣ 2 = ∣ ∫ − ∞ + ∞ G ( f ) H E ( f ) e j 2 π f T V   d f ∣ 2 |\tilde{d}(T_V)|^2={\left| \int_{-\infty}^{+\infty} G(f) H_E(f) e^{j2\pi f T_V} \, df \right|^2} d~(TV)2= +G(f)HE(f)ej2πfTVdf 2原因如下:
D ~ ( f ) = G ( f ) ⋅ H E ( f ) d ~ ( T V ) = 1 2 π ∫ − ∞ + ∞ G ( w ) ⋅ H E ( w ) ⋅ e j w T V   d w = ∫ − ∞ + ∞ G ( f ) ⋅ H E ( f ) ⋅ e j 2 π f T V   d f (8) \begin{align*} \tilde{D}(f) &= G(f) \cdot H_E(f) \\ \tilde{d}(T_V) &= \frac{1}{2\pi} \int_{-\infty}^{+\infty} G(w) \cdot H_E(w) \cdot e^{j w T_V} \, dw \\ &= \int_{-\infty}^{+\infty} G(f) \cdot H_E(f) \cdot e^{j 2\pi f T_V} \, df \end{align*} \tag{8} D~(f)d~(TV)=G(f)HE(f)=2π1+G(w)HE(w)ejwTVdw=+G(f)HE(f)ej2πfTVdf(8)

为了推导出如何设计 H E ( f ) H_E(f) HE(f)使得(7)达到最大值,需要用到以下不等式:
∣ ∫ − ∞ + ∞ G ( f ) H E ( f ) e j 2 π f T V   d f ∣ 2 ≤ [ ∫ − ∞ + ∞ ∣ G ( f ) ∣ ⋅ ∣ H E ( f ) ∣ ⋅ 1   d f ] 2 (9) \left| \int_{-\infty}^{+\infty} G(f) H_E(f) e^{j2\pi f T_V} \, df \right|^2 \leq \left[ \int_{-\infty}^{+\infty} |G(f)| \cdot |H_E(f)| \cdot 1 \, df \right]^2 \tag{9} +G(f)HE(f)ej2πfTVdf 2[+G(f)HE(f)1df]2(9)
( ∫ − ∞ + ∞ ∣ G ( f ) ∣ ⋅ ∣ H E ( f ) ∣   d f ) 2 ≤ ( ∫ − ∞ + ∞ ∣ G ( f ) ∣ 2   d f ) ⋅ ( ∫ − ∞ + ∞ ∣ H E ( f ) ∣ 2   d f ) (10) \left( \int_{-\infty}^{+\infty} |G(f)| \cdot |H_E(f)| \, df \right)^2 \leq \left( \int_{-\infty}^{+\infty} |G(f)|^2 \, df \right) \cdot \left( \int_{-\infty}^{+\infty} |H_E(f)|^2 \, df \right) \tag{10} (+G(f)HE(f)df)2(+G(f)2df)(+HE(f)2df)(10)
因此(7)最大值为:
SNR d ≤ ( ∫ − ∞ + ∞ ∣ G ( f ) ∣ 2   d f ) ⋅ ( ∫ − ∞ + ∞ ∣ H E ( f ) ∣ 2   d f ) N 0 2 ∫ − ∞ + ∞ ∣ H E ( f ) ∣ 2   d f = ∫ − ∞ + ∞ ∣ G ( f ) ∣ 2   d f N 0 / 2 = E g N 0 / 2 (11) \text{SNR}_d \leq \frac{\left( \int_{-\infty}^{+\infty} |G(f)|^2 \, df \right) \cdot \left( \int_{-\infty}^{+\infty} |H_E(f)|^2 \, df \right)}{\frac{N_0}{2} \int_{-\infty}^{+\infty} |H_E(f)|^2 \, df} = \frac{\int_{-\infty}^{+\infty} |G(f)|^2 \, df}{N_0/2} = \frac{E_g}{N_0/2} \tag{11} SNRd2N0+HE(f)2df(+G(f)2df)(+HE(f)2df)=N0/2+G(f)2df=N0/2Eg(11)
所以 H E ( f ) H_E(f) HE(f)设计为:
H E ( f ) = γ   G ∗ ( f )   e − j 2 π f T V (12) H_E(f) = \gamma \, G^*(f) \, e^{-j2\pi f T_V}\tag{12} HE(f)=γG(f)ej2πfTV(12)
h E ( t ) = γ g ∗ ( T V − t ) (13) h_E(t)= \gamma g^*(T_V - t)\tag{13} hE(t)=γg(TVt)(13)
其中 γ \gamma γ可以作为一个放大或缩小系数,用于调整 H E ( f ) H_E(f) HE(f)的幅度。
验证:
SNR d = ∣ ∫ − ∞ + ∞ G ( f ) γ G ∗ ( f ) e − j 2 π f T V e j 2 π f T V   d f ∣ 2 N 0 2 γ 2 ∫ − ∞ + ∞ ∣ G ( f ) ∣ 2   d f = γ 2 E g 2 N 0 2 γ 2 E g = E g N 0 / 2 (14) \text{SNR}_d = \frac{\left| \int_{-\infty}^{+\infty} G(f) \gamma G^*(f) e^{-j2\pi f T_V} e^{j2\pi f T_V} \, df \right|^2}{\frac{N_0}{2} \gamma^2 \int_{-\infty}^{+\infty} |G(f)|^2 \, df} = \frac{\gamma^2 E_g ^2}{\frac{N_0}{2} \gamma^2 E_g} = \frac{E_g}{N_0/2} \tag{14} SNRd=2N0γ2+G(f)2df +G(f)γG(f)ej2πfTVej2πfTVdf 2=2N0γ2Egγ2Eg2=N0/2Eg(14)
应用 H E ( f ) H_E(f) HE(f)后的检测信号为:
d ~ ( t ) = e ~ ( t ) ∗ h E ( t ) = e ~ ( t ) ∗ γ g ∗ ( T V − t ) = [ ∑ k = − ∞ + ∞ a m [ k ] g ( t − k T ) ] ∗ γ g ∗ ( T V − t ) = γ ∑ k = − ∞ + ∞ a m [ k ] [ g ( t − k T ) ∗ g ∗ ( T V − t ) ] (15) \begin{align*} \tilde{d}(t) &= \tilde{e}(t) * h_E(t) = \tilde{e}(t) * \gamma g^*(T_V - t) \\ &= \left[ \sum_{k=-\infty}^{+\infty} a_m[k] g(t - kT) \right] * \gamma g^*(T_V - t) \\ &= \gamma \sum_{k=-\infty}^{+\infty} a_m[k] \left[ g(t - kT) * g^*(T_V - t) \right] \end{align*} \tag{15} d~(t)=e~(t)hE(t)=e~(t)γg(TVt)=[k=+am[k]g(tkT)]γg(TVt)=γk=+am[k][g(tkT)g(TVt)](15)

g ( t − k T ) ∗ g ∗ ( T V − t ) = ∫ − ∞ + ∞ g ∗ ( T V − t + τ ) g ( τ − k T )   d τ = ∫ − ∞ + ∞ g ∗ ( T V − t + τ ′ ) g ( τ ′ − k T )   d τ ′ Substitution:  τ ′ = τ − t + T V ,   d τ = d τ ′ : = ∫ − ∞ + ∞ g ( τ ′ + t − T V − k T ) g ∗ ( τ ′ )   d τ ′ = φ g g ( t − k T − T V ) (16) \begin{align*} g(t - kT) * g^*(T_V - t) &= \int_{-\infty}^{+\infty} g^*(T_V - t + \tau) g(\tau - kT) \, d\tau \\ &= \int_{-\infty}^{+\infty} g^*(T_V - t + \tau') g(\tau' - kT) \, d\tau' \quad \\ \text{Substitution: } \tau' = \tau - t + T_V, \, d\tau = d\tau': \\ &= \int_{-\infty}^{+\infty} g(\tau' + t - T_V - kT) g^*(\tau') \, d\tau' \\ &= \varphi_{gg}(t - kT - T_V) \quad \end{align*} \tag{16} g(tkT)g(TVt)Substitution: τ=τt+TV,dτ=dτ:=+g(TVt+τ)g(τkT)dτ=+g(TVt+τ)g(τkT)dτ=+g(τ+tTVkT)g(τ)dτ=φgg(tkTTV)(16)

ISI Free Detection:
条件:脉冲信号 g ( t ) g(t) g(t)需要满足Nyquist第一定律:
φ g g [ λ T ] = ∫ − ∞ + ∞ g ( t ′ + λ T ) g ∗ ( t ′ )   d t ′ = def { E g for  λ = 0 0    for  λ ∈ Z ∖ { 0 } = δ [ λ ]   E g (17) \varphi_{gg}[\lambda T] = \int_{-\infty}^{+\infty} g(t' + \lambda T) g^*(t') \, dt' \overset{\text{def}}{=} \begin{cases} E_g \quad \text{for } \lambda = 0 \\ 0 \quad \ \ \ \text{for } \lambda \in \mathbb{Z} \setminus \{0\} \end{cases} = \delta[\lambda] \, E_g \tag{17} φgg[λT]=+g(t+λT)g(t)dt=def{Egfor λ=00   for λZ{0}=δ[λ]Eg(17)
在这里插入图片描述
检测信号在 t = ℓ T t=\ell T t=T时为:
d ~ [ ℓ ] = def d ~ ( ℓ T + T V ) = def a m [ ℓ ] d ~ ( ℓ T + T V ) = γ ∑ k = − ∞ + ∞ a m [ k ] φ g g ( ℓ T + T V − k T − T V ) = γ ∑ k = − ∞ + ∞ a m [ k ] φ g g ( ( ℓ − k ) T ) = def a m [ ℓ ] (18) \begin{align*} \tilde{d}[\ell] &\overset{\text{def}}{=} \tilde{d}(\ell T + T_V) \overset{\text{def}}{=} a_m[\ell] \\ \tilde{d}(\ell T + T_V) &= \gamma \sum_{k=-\infty}^{+\infty} a_m[k] \varphi_{gg}(\ell T + T_V - kT - T_V) \\ &= \gamma \sum_{k=-\infty}^{+\infty} a_m[k] \varphi_{gg}((\ell - k)T) \overset{\text{def}}{=} a_m[\ell] \end{align*} \tag{18} d~[]d~(T+TV)=defd~(T+TV)=defam[]=γk=+am[k]φgg(T+TVkTTV)=γk=+am[k]φgg((k)T)=defam[](18)
所以 γ = 1 E g \gamma=\frac{1}{E_g} γ=Eg1:
H E ( f ) = 1 E g   G ∗ ( f )   e − j 2 π f T V (19) H_E(f) =\frac{1}{E_g} \, G^*(f) \, e^{-j2\pi f T_V}\tag{19} HE(f)=Eg1G(f)ej2πfTV(19)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值