Relation Network for Person Re-identification阅读总结

Relation Network for Person Re-identification阅读笔记

What?

直接PCB太暴力了,没有考虑到块与块之间的关系。于是本文提出了一种one-vs-rest relational 策略考虑了块与块之间的关系。具体如下:
在这里插入图片描述
p 1 p_1 p1为例,上图 p 1 p_1 p1~ p 6 p_6 p6的获取方式和PCB完全一致,后面则略有不同。

这里将 p 2 p_2 p2~ p 6 p_6 p6的结果直接做 r 1 = ( p 2 + p 3 + p 4 + p 5 + p 6 ) / 5 r_1=(p_2+p_3+p_4+p_5+p_6)/5 r1=(p2+p3+p4+p5+p6)/5,然后 1 × 1 1 \times 1 1×1卷积变换通道得到 r ˉ 1 \bar r_1 rˉ1,同时 p 1 p_1 p1通过 1 × 1 1 \times 1 1×1卷积变换通道得到 p ˉ 1 \bar p_1 pˉ1,两者按channel做concat得到结果经过 1 × 1 1 \times 1 1×1卷积变换通道,所得结果与 p ˉ 1 \bar p_1 pˉ1做残差加法,得到最终结果 q 1 q_1 q1。然后就可以说 q 1 q_1 q1中包含了与 p 2 p_2 p2$p_6$有关的信息了,就考率了块与块之间的联系。其余同理,就可以得到$q_1$ q 6 q_6 q6

公式表达如下:
在这里插入图片描述
其中T表示concat。

然后就是作者提了一个GCP,和以往有啥差别呢?下图直接对比:
在这里插入图片描述

详细描述:
GAP , GMP , GAP+GMP都用过,各有好处,也各有缺陷。

  • GAP covers the whole body parts of the person image , but it is easily distracted by background clutter and occlusion.
  • GMP overcomes this problem by aggregating the feature from the most discriminative part useful for reID while discarding background clutter. This, however, does not contain information from the whole body parts.(背景区域基本不利于分类,因此激活值一般很小,通过GMP就自然被drop掉了)`
  • GAP +GMP may perform better, but it is also influenced by background clutter. It has been proven that GMP is more effective than GAP(Fu et al. 2019 SSG), which will be also verified once more in our experiment.
  • Motivated by this, we propose a novel GCP method based on GMP to extract a global feature map from the whole body parts . 具体咋做,如下图:
    在这里插入图片描述
    做法应该很清楚,这里不再赘述。和GMP,GAP差别也很明显,GCP引入了要学习的参数。

讲到这里,其实很懵,GCP是什么?要GCP干啥的?

GCP指的是Global Contrastive Pool。由于我们之前考虑了块之间的关系,而Contrastive 体现在哪?就是表现在 p a v g − p m a x p_{avg} - p_{max} pavgpmax。 avg中保留了整个图像的信息,max是行人部分的信息,那差是什么?就是背景部分的信息。而结果和max的行人信息再合并。那去掉又合并岂不是白做了?不是的,concat(合并)之前还有一个conv的存在,因此其实还是不一样的,并不是减去又加上的操作,而是关注了一些更关键的信息。最后同样用一个残差保证学习的结果不会比之前差。

因此,总体模型为:
在这里插入图片描述

损失就是softmax+triplet,不过分强调。

效果

在这里插入图片描述
效果相当不错,但训练细节不是很多。

其中: − S -S S表示和PCB一样切6块,即 q P 6 q^{P_6} qP6。同理 q P 2 q^{P_2} qP2 q P 4 q^{P_4} qP4分别是切2块和4块,将三个尺度的结果concat起来就是 T ( q P 2 , q P 4 , q P 6 T(q^{P_2},q^{P_4},q^{P_6} T(qP2,qP4,qP6,即 − F -F F

其他效果展示:
在这里插入图片描述消融:在这里插入图片描述上表的实验相当充足。而且这里按照作者的实验,GCP提点能力很强

在这里插入图片描述

One-vs-rest中做concat的必要性:在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

### 回答1: "Learning to Compare: Relation Network for Few-Shot Learning" 是一篇关于Few-Shot Learning(小样本学习)的论文,提出了一种称为“关系网络”的新型神经网络架构。 该网络旨在解决小样本学习中的问题,该问题通常会导致在只有极少量的训练样本的情况下,模型的泛化性能下降。关系网络使用一个子网络来提取图像特征,并通过计算这些特征之间的关系来对它们进行分类。 关系网络的特点是它在执行分类任务时能够捕捉物体之间的关系和上下文信息,因此在少量样本的情况下,它的性能比其他方法更好。该网络已经被广泛应用于小样本学习领域,并在多项实验中获得了优秀的表现。 ### 回答2: 本文主要介绍了一种基于关系网络的few-shot学习方法——Relation Network(RN)。Few-shot学习是一种类别识别的任务,旨在从非常少量(通常是几个)的样本中学习新的类别。RN为此提供了一种强大的框架,可以在few-shot学习中能够有效地捕捉物体之间的关系,从而实现精确的类别识别。 RN在模型设计中引入了两个重要的组件:特征提取器和关系网络。特征提取器通常是卷积神经网络(CNN),它可以提取出每个样本的特征表示。关系网络的作用是计算出每对样本之间的关系,将这些关系汇总到一起,最终出现样本之间的相对关系。在计算样本之间的关系时,RN采用的是一种全连接神经网络,它对每一对样本的特征进行融合,然后输出一个特定类别的置信度。 值得注意的是,RN的关系网络不仅可以使用在few-shot学习中,也可以应用于全局分类问题。此外,RN采用了一些有效的技巧来加速测试阶段的推理速度,比如使用浅层矩阵乘法以减少计算量,和简单的欧氏距离作为度量衡量。 总而言之,RN是一种强大的学习方法,特别是在few-shot学习方面,可以实现更好的判别性能和更准确的类别识别。不过,同时也存在一些限制,比如需要更多的数据集来训练样本的特征提取器,以及容易出现过拟合问题。因此,RN还需要进行更深入的研究和优化,以实现更大范围的应用和实际效果。 ### 回答3: 学习比较:关系网络是一种少样本学习的方法,旨在解决少样本学习问题中的挑战。传统的机器学习方法需要大量数据来训练模型。而在现在许多领域,例如医疗诊断和工业生产,只有很少的数据可用于训练模型。在这种情况下,少样本学习就变得非常重要。学习比较:关系网络是少样本学习的一种新方法,它通过学习对象之间的关系来捕捉它们之间的相似性和差异性。 学习比较:关系网络包含两个部分:特征提取器和关系网络。特征提取器将输入图像转换为对应的向量表示,而关系网络则对这些向量进行比较,从而推断它们之间的关系关系网络可以用来处理各种不同的问题,例如分类、回归和生成等。 学习比较:关系网络的优点是,它可以利用少量的数据来学习,并且可以在不同的任务之间共享知识。这使它成为处理少样本学习问题时的一个有力工具。在实际应用中,学习比较:关系网络已经被广泛应用于图像分类、目标检测和语音识别等领域,并产生了许多显著的结果。未来,随着越来越多的研究者开始使用这种方法,我们可以期待看到更多的成功案例,并进一步将学习比较:关系网络应用到更广泛的领域,以帮助人们解决难题并改善生活质量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值