Generalizing A Person Retrieval Model Hetero- and Homogeneously阅读总结

Generalizing A Person Retrieval Model Hetero- and Homogeneously

Zhun Zhong, Liang Zheng, Shaozi Li,Yi Yang 2018 ECCV
代码: https://github.com/zhunzhong07/HHL

1. 摘要

引入了一种Hetero(异质)-Homogeneous(同质) Learning (HHL) 学习方法,考虑两个属性:相机不变性,即一张图像迁移到其他相机后ID不变;源域和目标域ID不重叠,因此源域和目标域各选一张图像组成pair必定是负对。前者在目标域操作,为同质;而后者在源域和目标域操作,为异质。

2. 介绍

作者处理跨域问题的一贯风格是重点考虑域内变化,而不是像当下很多方法那样大费周章的去做域适应,其论文如CamStyle,HHL,ECN和8月份刚挂在arxiv上的ECN+GCN等都是在考虑域内变化问题,而且其结果显示这种方法很有效(几乎跨域每年提10个点)。本文的思想也是在处理跨域中的域内变化问题:

  • 相机不变性
    一张图像进行相机风格迁移后与原图像的ID应该是一样的。其是在目标域上进行,而目标域的相机ID很好获取,即一个相机上拍的所有视频都打同一个相机ID即可。然后,就是在做CamStyle的工作了。
  • 域间连通性:源域目标域的ID肯定是不同的(开集),组成负对,而源域很容易选出一个正对,组成三元组进行训练

3. 方法

在这里插入图片描述
根据图就能很清楚的看出HHL的做法:

  • 首先源域图像先训了基本的CNN ReID backbone,交叉熵损失监督 L c r o s s L_cross Lcross
  • 接着目标域每张图像都进行相机风格迁移,过程中伴随有损失 L C L_C LC
  • 然后就是源域图像+目标域图像+目标域迁移后图像一起训练CNN,损失为 L D L_D LD
    * L C L_C LC L D L_D LD都是基于下面的普通三元组损失:
    在这里插入图片描述
    只不过它们组成triplet的方式不一样,对于 L C L_C LC,其triplet包含目标域的一张anchor图像,这张图像进行迁移后的图像作positive(ECN中的C),而目标域图像的每一张都认为是一个类别(ECN中的E),因此再随机选一张目标域图像作negative即可组成三元组,即:
    在这里插入图片描述
    而对于 L D L_D LD,其triplet的组成就比较简单了,源域选一张做anchor,然后根据源域的标签选一个positive,再在目标域选一张即为negative,组成三元组,即:
    在这里插入图片描述
    最终:
    在这里插入图片描述
    总损失为:
    在这里插入图片描述
    注意几点:
  • CamStyle中用的是CycleGAN,而这里用的CamStyle将CycleGAN换成了StarGAN,原理不变,但原先迁移图像到其余C-1个相机下需要训练C-1个模型,但StarGAN只需要一个模型就可以搞定
    参考笔记:知乎@酱油妹 https://zhuanlan.zhihu.com/p/31481483
  • CamStyle带来的性能提升和其他数据扩增方法相比如下:
    在这里插入图片描述
  • 不同采样策略
    ** 随机采样:每个batch选择的图像都认为是不同的ID,按这种方式挑选负对组成三元组(最简单)
    ** 聚类采样:先将图像聚类为K类,然后视为K个ID,按这些ID仅采样图像以组成三元组
    ** 监督采样,目标域给真实标签,按标签进行采样组成三元组(现实中不可能,这里是探索性能对比)

性能如下:
在这里插入图片描述
不难看出,方案1最简单且最好。因为任取两张图像,是负对的概率>>是正对的概率。

相机迁移示例:
在这里插入图片描述

4. 实验

4.1 实验细节

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4.2 参数分析

在这里插入图片描述
0.4~0.8最好
在这里插入图片描述
每个bacth中真图不能太少。

4.3 消融并和SOTA比

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
性能很高

weixin073智慧旅游平台开发微信小程序+ssm后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
python017基于Python贫困生资助管理系统带vue前后端分离毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值