论文阅读:cvpr2020 行人重识别 Relation-Aware Global Attention

Relation-Aware Global Attention for Person Re-identification阅读笔记

作者:Zhizheng Zhang, Cuiling Lan,Wenjun Zeng,Xin Jin,Zhibo Chen
来源:CVPR 2020
文章链接:https://arxiv.org/pdf/1904.02998v1.pdf
代码链接:https://github.com/microsoft/Relation-Aware-Global-Attention-Networks
动机:在行人重识别研究中,注意力机制可以强化区分特征,抑制无关特征。
以前的方法通常使用局部卷积来学习注意力,忽略了从全局结构模式中挖掘知识。作者为了使网络更好的进行attention学习,提出了Relation-Aware Global Attention (RGA) module。
解决方法:
1、作者通过设计attention,让网络提取更具有区别度的特征信息。简单来说,就是给行人不同部位的特征加上一个权重,从而达到对区分特征的增强,无关特征的抑制。
2、作者在这篇论文中提出了一个Relation-Aware Global Attention (RGA) 模型挖掘全局结构相关信息,使得attention集中在有区分度的人体部位,并且考虑到每个特征节点和全局特征之间的关系。用来模拟人的视觉系统,对不同的特征付出不同的注意力。
3、对于每一个代表空间位置的特征向量节点,取所有节点之间的成对关系,加上当前节点来表征全局结构信息。对于一个特征集合V = {xi ∈ R d , i = 1, · · · , N},有N个相关特征,通过学习一个表示的mask矩阵,用a=(a1, · · · , aN )表示,用来衡量每个特征的重要程度,通过attention更新的特征为zi = ai*xi,主要任务就是学习ai的值。
方法亮点:
如下图所示,在作者之前的attention学习中,有两种普遍的学习方法,分别为下图中的a和b。a1, · · · , a5 对应于五个特征向量 x1, · · · , x5的attention值。
a) 使用卷积神经网络,对每一个特征x,学习一个attention值,因此只能学习到局部特征,而忽视了全局特征。
b) 使用全连接网络,学习到的attention值来自于所有特征向量的连接,虽然学习到了全局特征,但参数量过大,计算量太大。
c) 通过考虑全局的相关信息学习attention值,即对每一个特征向量,全局的关联信息用一个关系对ri = [ri,1, · · · , ri,5, r1,i, · · · , r5,i]表示,其中ri,1表示第i个特征节点和第一个特征节点的关系,以此类推。用一个符号ri&j = [ri,j , rj,i]表示,所有的ri&j组合可以得到x1一个关联特征,组合在一起得到下图中的特征向量r1,再和原始特征向量x1拼接,得到一个relation-aware feature y1, y1 = [x1, r1 ],作为提取attention的特征向量。因此可以看出,基于特征x1得到的attention值a1既包含了局部特征x1,又包含了全局所有特征之间的关系。

参考:
https://blog.csdn.net/baidu_41622980/article/details/107849683

模型介绍及代码实现:
可以看下面这链接:给出了模型的代码重点介绍,
https://blog.csdn.net/sol_data12/article/details/113622644

https://www.pythonheidong.com/blog/article/564949/4c71b25d25714d9841f3/
原始的resnet50 代码介绍 这里面代码步骤比较详细一点

论文翻译:https://blog.csdn.net/qq_34124009/article/details/108483667
这篇翻译的有点水 凑合看看
加一些自己的总结:
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

https://download.csdn.net/download/zqx951102/33676300
全部的ppt我上传在这了 感兴趣的可以下载。

相互关联的博客:
https://blog.csdn.net/baidu_41617231/article/details/107271242?utm_medium=distribute.pc_relevant.none-task-blog-2defaultCTRLISTdefault-2.no_search_link&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2defaultCTRLISTdefault-2.no_search_link
介绍三篇2020年 论文的主要思想:
Relation-Aware Global Attention for Person Re-identification(CVPR2020)
Multi-Granularity Reference-Aided Attentive Feature Aggregation for Video-based Person Re-identification(CVPR2020)
Relation Network for Person Re-identification(AAAI2020)

  • 5
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
### 回答1: "Learning to Compare: Relation Network for Few-Shot Learning" 是一篇关于Few-Shot Learning(小样本学习)的论文,提出了一种称为“关系网络”的新型神经网络架构。 该网络旨在解决小样本学习中的问题,该问题通常会导致在只有极少量的训练样本的情况下,模型的泛化性能下降。关系网络使用一个子网络来提取图像特征,并通过计算这些特征之间的关系来对它们进行分类。 关系网络的特点是它在执行分类任务时能够捕捉物体之间的关系和上下文信息,因此在少量样本的情况下,它的性能比其他方法更好。该网络已经被广泛应用于小样本学习领域,并在多项实验中获得了优秀的表现。 ### 回答2: 本文主要介绍了一种基于关系网络的few-shot学习方法——Relation Network(RN)。Few-shot学习是一种类别识别的任务,旨在从非常少量(通常是几个)的样本中学习新的类别。RN为此提供了一种强大的框架,可以在few-shot学习中能够有效地捕捉物体之间的关系,从而实现精确的类别识别。 RN在模型设计中引入了两个重要的组件:特征提取器和关系网络。特征提取器通常是卷积神经网络(CNN),它可以提取出每个样本的特征表示。关系网络的作用是计算出每对样本之间的关系,将这些关系汇总到一起,最终出现样本之间的相对关系。在计算样本之间的关系时,RN采用的是一种全连接神经网络,它对每一对样本的特征进行融合,然后输出一个特定类别的置信度。 值得注意的是,RN的关系网络不仅可以使用在few-shot学习中,也可以应用于全局分类问题。此外,RN采用了一些有效的技巧来加速测试阶段的推理速度,比如使用浅层矩阵乘法以减少计算量,和简单的欧氏距离作为度量衡量。 总而言之,RN是一种强大的学习方法,特别是在few-shot学习方面,可以实现更好的判别性能和更准确的类别识别。不过,同时也存在一些限制,比如需要更多的数据集来训练样本的特征提取器,以及容易出现过拟合问题。因此,RN还需要进行更深入的研究和优化,以实现更大范围的应用和实际效果。 ### 回答3: 学习比较:关系网络是一种少样本学习的方法,旨在解决少样本学习问题中的挑战。传统的机器学习方法需要大量数据来训练模型。而在现在许多领域,例如医疗诊断和工业生产,只有很少的数据可用于训练模型。在这种情况下,少样本学习就变得非常重要。学习比较:关系网络是少样本学习的一种新方法,它通过学习对象之间的关系来捕捉它们之间的相似性和差异性。 学习比较:关系网络包含两个部分:特征提取器和关系网络。特征提取器将输入图像转换为对应的向量表示,而关系网络则对这些向量进行比较,从而推断它们之间的关系。关系网络可以用来处理各种不同的问题,例如分类、回归和生成等。 学习比较:关系网络的优点是,它可以利用少量的数据来学习,并且可以在不同的任务之间共享知识。这使它成为处理少样本学习问题时的一个有力工具。在实际应用中,学习比较:关系网络已经被广泛应用于图像分类、目标检测和语音识别等领域,并产生了许多显著的结果。未来,随着越来越多的研究者开始使用这种方法,我们可以期待看到更多的成功案例,并进一步将学习比较:关系网络应用到更广泛的领域,以帮助人们解决难题并改善生活质量。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zqx951102

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值