【Cytoscape】使用csvf文件导入的初步心得(3.7版本)

本文介绍了使用Cytoscape 3.7版本通过csvf文件导入数据来创建和编辑网络图的心得体会,包括数据构成、网络图创建、数据导入更新及显示格式调整的步骤和注意事项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用csvf文件导入的初步心得

这次比赛碰到了画网络图的需求,哥们扔给我一个奇怪的软件,让我研究研究然后出几张图。苦逼的我只能硬着头皮去啃,庆幸的是这个软件的更新速度很快,文档写的更是勤快。在翻阅一定的中文资料和英文文档后发现,现在的中文博客资料之类的早已过时,有些部分的内容不太详实,核心内容可以借鉴。在动手试了试安装目录下的demo后,抓紧时间看了看官方入门手册比较关键的几章之后,动手画了一个图验证一下自己的想法,便胸有成竹了。以下便对Cytoscape使用的一些心得(有些内容也因为有点粗糙)

数据构成

学过图论的应该能理解网络图的数据构成(学过数据库就更好了):Node Table代表着Node的相关数据,shared name代表是啥?我猜测是多个view共享的内容(未仔细看文档);
Node Table
对应的Edge Table的column必定有一条边的两个点的编号列。
Edge Table
Network也不过是对于整个网络的描述罢了。

Note: 此软件创建

### 如何在 Cytoscape导入与歌声相关的文件 要在 Cytoscape 中成功导入与歌声相关的文件,通常需要将这些数据整理为适合 Cytoscape 处理的格式,比如 CSV 或 TSV 文件。以下是关于如何准备和导入此类文件的具体方法: #### 准备数据文件 为了使 Cytoscape 能够识别并处理与歌声相关的数据,需将其转换为节点(Nodes)和边(Edges)的形式[^2]。 - **节点文件**:描述各个实体的信息,例如歌手、歌曲名称或其他相关属性。 - **边文件**:定义不同实体之间的关系,例如哪位歌手演唱了哪些歌曲。 可以通过 Python 将原始数据转化为上述结构的数据帧,并保存为 CSV/TSV 格式的文件。具体实现如下所示: ```python import pandas as pd # 构建节点 DataFrame nodes_data = { 'id': ['Song1', 'Song2', 'ArtistA', 'ArtistB'], 'type': ['song', 'song', 'artist', 'artist'] } df_nodes = pd.DataFrame(nodes_data) # 构建边 DataFrame edges_data = { 'source': ['Song1', 'Song2'], 'target': ['ArtistA', 'ArtistB'], 'interaction': ['sung_by', 'sung_by'] } df_edges = pd.DataFrame(edges_data) # 保存到文件 df_nodes.to_csv('nodes.csv', index=False, sep='\t') # 使用制表符分隔 df_edges.to_csv('edges.csv', index=False, sep='\t') ``` #### 导入Cytoscape 完成数据预处理后,按照以下方式导入 Cytoscape: 1. 打开 Cytoscape 并选择 `File -> Import -> Network from Table/File`。 2. 在弹出窗口中分别加载刚才生成的节点 (`nodes.csv`) 和边 (`edges.csv`) 文件3. 设置好对应的列映射规则(如指定源节点列为 `source`,目标节点列为 `target`),点击下一步直至完成导入过程。 通过以上操作即可顺利地把与歌声有关联性的信息引入到 Cytoscape 当中进行进一步分析或绘图工作。 #### 注意事项 确保所创建的CSV/TSV文件遵循标准格式要求,避免因字段缺失等问题影响正常读取效果[^4]。此外,对于复杂网络模型来说可能还需要额外调整布局算法参数来获得更直观清晰的结果展示形式[^5]。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值