沉香GG
@生信;@分子
展开
-
RNA-seq分析:Step10(Cytoscape制作蛋白质互作网络及寻找核心基因)
Cytoscape是一个生物信息学工具,用于可视化和分析分子相互作用网络。在Cytoscape软件中,输入的edges文件指的是连接节点的边缘信息,该文件包含了所有边缘的起始节点和终止节点的信息。通过同时导入edges和nodes文件,Cytoscape可以生成一个可视化的网络图,其中所有节点和边缘的属性信息可以根据需要进行调整和编辑。在寻找核心基因时,我们可以利用Cytoscape提供的网络分析工具,如度中心性、介数中心性、紧密度等指标,来计算网络中各节点的重要性,并筛选出具有重要作用的核心基因。原创 2023-09-09 22:33:14 · 2063 阅读 · 4 评论 -
RNA-seq分析:Step9(共表达分析)
WGCNA(Weighted Correlation Network Analysis)是一种系统生物学中常用的数据分析方法,主要用于分析高通量基因表达数据。该方法通过构建基因共表达网络,将相似的基因组织到同一模块中,并用模块间的关联性进行分析,从而识别与生物学过程相关的模块和关键基因。WGCNA分析流程主要包括:数据预处理、构建共表达网络、模块检测、模块注释和功能分析等步骤。原创 2023-08-30 11:05:32 · 1566 阅读 · 0 评论 -
RNA-seq分析:Step8(富集分析)
RNA-seq富集分析是一种用于分析基因表达数据中特定基因或通路是否富集的分析方法。其基本思想是比较不同基因对应的转录本/基因之间的表达差异及其对应的基因注释信息,通过统计学方法评估差异的显著性,从而确定是否存在某些特定的功能通路或基因集合富集的情况。常用的RNA-seq富集分析工具包括GOseq、KEGG(KEGG enrichment analysis)、DAVID(Database for Annotation, Visualization and Integrated Discovery)等。这原创 2023-08-28 18:06:06 · 2626 阅读 · 0 评论 -
RNA-seq分析:Step7(差异表达分析)
RNA-seq是一种高通量测序技术,可以对转录组进行全面、高灵敏度的分析。差异表达分析是RNA-seq数据分析中常用的方法之一,用于识别不同条件下基因表达水平的差异。差异表达分析一般包括数据预处理、基因表达计数、表达矩阵构建、差异分析、基因功能注释等步骤。在差异分析中会使用一些常见的统计方法,如DESeq2、edgeR等,通过比较不同样本之间的基因表达数目或含量,筛选出差异表达基因,并进行生物学功能注释和通路分析,以探究不同条件下基因表达的差异及其可能的生物学影响。原创 2023-08-26 17:47:47 · 2402 阅读 · 3 评论 -
RNAseq分析:Step6(计算表达丰度)
RNA-seq技术是研究基因表达的常用方法之一,其表达丰度计算是RNA-seq数据分析的重要步骤之一。RNA-seq表达丰度计算的基本流程如下:序列比对:将测序数据比对到参考基因组,得到每个基因的计数。转录本重构:使用转录本拼接软件,如Cufflinks或StringTie,将比对后的 Bam/Sam 文件转换为每个转录本的表达值。这里的转录本可能是已知的基因、未知的基因或转录本。表达值的归一化:考虑样本间的技术差异和表达量大小的影响,对表达值进行归一化。原创 2023-08-24 11:16:55 · 1796 阅读 · 0 评论 -
RNA-seq分析:Step5(拼接)
转录本拼接是指将同一个基因产生的不同转录本进行合并,形成一个完整的基因序列。转录本拼接主要应用于RNA-Seq数据分析中,对基因组注释的完善以及发现未知的基因和转录本具有重要意义。在进行转录本拼接时,首先需要将原始的RNA-Seq数据进行清洗和过滤,去除低质量的序列和污染物。接着,利用特定的拼接软件对清洗后的序列进行处理,根据同源性、跨越剪切和外显子连接等特征,将不同的转录本进行合并。常用的拼接软件包括Cufflinks、StringTie和Trinity等。原创 2023-08-23 10:24:08 · 1227 阅读 · 2 评论 -
RNA-seq分析:Step4(比对)
预处理之后的fastq文件,可以使用HISAT2软件将reads比对至参考基因组上。HISAT2软件将reads比对至参考基因组上的步骤如下:1. 对参考基因组进行建索引。对参考基因组进行预处理,生成索引文件,包括基因组序列的FM索引和SA索引。2. 将原始的reads进行预处理。包括去除接头序列、去除低质量的碱基,以及进行过滤,得到质量较高的、可靠的reads。3. 利用建立的FM索引和SA索引,将处理后的reads与参考基因组进行比对。首先,通过FM索引,快速找到与reads匹配的可能位置;原创 2023-08-22 22:48:09 · 1715 阅读 · 0 评论 -
RNA-seq分析:Step3(数据预处理)
RNA-seq是一种高通量基因表达分析技术,常用于研究生物体内基因表达的变化。在进行RNA-seq之前,需要进行预处理工作以优化实验结果。预处理包括:1)样本质量控制,包括检验RNA完整性和纯度;2)RNA文库制备,包括选择RNA样本、RNA转录成cDNA、文库构建等;3)测序平台选择,包括Illumina、IonTorrent等;4)数据质量控制,包括去除低质量序列、去除接头序列、过滤低复杂度序列等;5)比对和定量,包括将测序序列映射到参考基因组、计算基因表达量等。预处理的好坏直接影响后续分析结果的可靠性原创 2023-08-21 16:30:18 · 2971 阅读 · 0 评论 -
RNA-seq分析:Step2(数据的下载)
转录组测序原始文件和基因组数据的下载是进行转录组分析的重要步骤,本文中,以拟南芥的RNA-seq数据为例子,进行RNA原始测序数据的下载和基因组文件的下载。原创 2023-08-20 20:20:09 · 3357 阅读 · 0 评论 -
RNA-seq分析:Step1(软件的安装及配置)
好几个月没有跑RNA-seq分析了,为防止遗忘,特整理分析流程于转录组分析专栏。RNA-seq分析是生信分析流程比较入门的操作,常规的分析主要包括差异基因表达分析、GO和KEGG分析和WGCNA分析。一般来说,前两个分析是最为常见的,第三个主要存在于纯转录组分析文章中。本文主要讲述转录组分析的第一步,软件的安装和配置。原创 2023-08-19 20:26:41 · 2780 阅读 · 2 评论