欧式距离 和 余弦相似度

欧式距离 和 余弦相似度

都单位向量化后,再化简后就是: [公式],其中cos为余弦相似度,euc为欧氏距离。

两者在归一化为单位向量的时候计算相似度结果完全一样。只不过余弦相似度是值越大月相似,欧式距离是值越小越相似

 

两者各自的适用模型:

 

  1. 欧氏距离能够体现个体数值特征的绝对差异,所以更多的用于需要从维度的数值大小中体现差异的分析,如使用用户行为指标分析用户价值的相似度或差异。主要在乎的是值
  2. 余弦距离更多的是从方向上区分差异,而对绝对的数值不敏感,更多的用于使用用户对内容评分来区分兴趣的相似度和差异,同时修正了用户间可能存在的度量标准不统一的问题(因为余弦距离对绝对数值不敏感)。主要在乎的是方向

再举个非常形象简单的关于聚类的例子:

歌手大赛,三个评委给三个歌手打分,第一个评委的打分(10,8,9), 第二个评委的打分(4,2,3),第三个评委的打分(8,10,9),如果采用余弦相似度来看每个评委的差异,虽然每个评委对同一个选手的评分不一样,但第一、第二两个评委对这三位歌手实力的排序是一样的,只是第二个评委对满分有更高的评判标准,说明第一、第二个评委对音乐的品味上是一致的。

因此,用余弦相似度来看,第一、第二个评委为一类人,第三个评委为另外一类。 
如果采用欧氏距离, 第一和第三个评委的欧氏距离更近,就分成一类人了,但其实不太合理,因为他们对于三位选手的排名都是完全颠倒的


https://blog.csdn.net/linvo/article/details/9333019

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

贾世林jiashilin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值