计算两个向量间的欧氏距离_计算两向量的欧式距离,余弦相似度

本文介绍了如何使用numpy计算两个向量间的欧氏距离和余弦相似度,并探讨了它们在机器学习中计算相似度的区别。欧氏距离衡量的是点之间的距离,而余弦相似度关注的是向量之间的夹角。文章通过实例解释了两种方法的计算过程和实际意义,展示了它们在判断变化趋势和价格相似度等方面的应用。
摘要由CSDN通过智能技术生成

>>>import numpy

>>>vec1=[[1,1,1],[2,2,2]]

>>>vec2=[[2,2,2],[1,1,1]]

>>>vec1=numpy.array(vec1)

>>>vec2=numpy.array(vec2)

>>>vec1

array([[1, 1, 1],

[2, 2, 2]])

>>>vec2

array([[2, 2, 2],

[1, 1, 1]])

>>>dist = numpy.sqrt(numpy.sum(numpy.square(vec1 - vec2)))

>>>dist

2.4494897427831779

>>>numpy.linalg.norm(vec1-vec2)

2.4494897427831779

余弦相似度:

>>>vec1

array([[1, 1, 1],

[2, 2, 2]])

>>>vec2

array([[2, 2, 2],

[1, 1, 1]])

>>>num=float(numpy.sum(vec1*vec2))

>>>num

12.0

>>>denom=numpy.linalg.norm(vec1)*numpy.linalg.norm(vec2)

>>>cos=num/denom

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值