过拟合解决方法

针对过拟合问题,本文提出了多种解决策略。包括数据增强,如图像的平移、旋转和缩放,以及NLP中利用机器翻译生成新数据。此外,通过降低模型复杂度,如减少神经网络层数和神经元,或者对决策树进行剪枝和限制深度。正则化技术,如L1和L2正则化,也是有效的手段。提前终止策略和集成学习,例如Dropout和随机森林、GBDT,也能帮助防止过拟合。
摘要由CSDN通过智能技术生成

数据增强-扩展数据集

  • 图像:平移、旋转、缩放

  • 利用生成对抗网络(GAN)生成新数据

  • NLP:利用机器翻译生成新数据

降低模型复杂度

  • 神经网络:减少网络层、神经元个数

  • 决策树:降低树的深度、剪枝

权值约束(添加正则化项)

  • L1 正则化

  • L2 正则化

提前终止 early stopping

集成学习

  • 神经网络:Dropout

  • 决策树:随机森林、GBDT

​​​​​​​

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

贾世林jiashilin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值