复变函数的积分——方法论与习题练习

积分计算公式

首先,因为 z = x + i y , d z = d x + i d y z=x+\mathrm{i}y,\mathrm{d}z=\mathrm{d}x+\mathrm{id}y z=x+iy,dz=dx+idy,那么 ∫ C f ( z ) d z \int_C f(z)dz Cf(z)dz就可以被转化成实变函数中的第二类曲线积分。

定理

[复变函数积分与第二类曲线积分的关系]
如果 f ( z ) = u ( x , y ) + i v ( x , y ) , z = x + i y , x , y ∈ R f(z)=u(x,y)+\mathrm{i}v(x,y),z=x+ iy,x,y \in \mathrm{R} f(z)=u(x,y)+iv(x,y),z=x+iy,x,yR 沿 C C C连续且 f ( z ) f(z) f(z)可积,那么有公式
∫ C f ( z ) d z = ∫ C u d x − v d y + i ∫ C v d x + u d y . \int_Cf(z)\mathrm{d}z=\int_Cu\mathrm{d}x-v\mathrm{d}y+\mathrm{i}\int_Cv\mathrm{d}x+u\mathrm{d}y. Cf(z)dz=Cudxvdy+iCvdx+udy.

但是这种办法计算量比较繁琐。如果积分曲线知道了,那么由于 f ( z ) f(z) f(z) C C C上有定义,可以根据 C C C的方程
参数化计算。例如在单位圆上积分时,就可以根据 r = 1 r=1 r=1,从而设 z = e i θ z=e^{i\theta} z=eiθ
后面的例题,一开始的很多题都会使用参数化的办法。

原函数与不定积分

f ( z ) f(z) f(z)为单连通区域 B B B内的一解析函数,而 C 1 C_1 C1 C 2 C_2 C2为在 B B B内连接点 z 0 z_0 z0 z z z的任意两条路径,

则有 ∫ C 1 f ( z ) d z = ∫ C 2 f ( z ) d z \int_{C_1} f(z)\mathrm{d}z=\int_{C_2}f(z)\mathrm{d}z C1f(z)dz=C2f(z)dz,即单连通区域内解析函数的积分与积分路径无关

f ( z ) f(z) f(z)在单连通区域 B B B内解析,则 F ( z ) = ∫ z 0 z f ( ζ ) F(z)=\int_{z_0}^z f(\zeta) F(z)=z0zf(ζ)d ζ ( \zeta( ζ(因为积分与路径无关,故当 z 0 ∈ B z_0\in B z0B固定时 , F ( z ) ,F(z) ,F(z) z z z的单值函数) 也在 B B B内解析,且 F ′ ( z ) = f ( z ) . F^\prime(z)=f(z). F(z)=f(z).

同实函数的情形一样,我们称 F ( z ) F(z) F(z) f ( z ) f(z) f(z)的一个原函数

定理

[Newton-Leibniz公式]
∫ z 1 z 2 f ( z ) d z = F ( z 2 ) − F ( z 1 ) ( z 1 , z 2 ∈ B ) \int_{z_1}^{z_2}f(z)\mathrm{d}z=F(z_2)-F(z_1)\quad(z_1,z_2\in B) z1z2f(z)dz=F(z2)F(z1)(z1,z2B)

柯西积分定理与公式

定理

[柯西积分定理]
设函数 f ( z ) f(z) f(z)在单连通区域 D D D上解析,且 C C C D D D中任意一条可求长的闭曲线,那么有
∮ C f ( z ) d z = 0. \oint_Cf(z)\mathrm{d}z=0. Cf(z)dz=0.
上述定理等价于
设有简单闭曲线 C C C , D D D C C C的内部,函数 f ( z ) f(z) f(z)在闭包 D ‾ = D + C \overline{D}=D+C D=D+C上解析,那么有
∮ C f ( z ) d z = 0. \oint_Cf(z)\mathrm{d}z=0. Cf(z)dz=0.
上述定理略加推广,可以得到下面更有用的定理:
设有简单闭曲线 C C C, D D D C C C的内部,函数 f ( z ) f(z) f(z)在区域 D D D上解析,在 C C C上连续,那么有
∮ C f ( z ) d z = 0. \oint_Cf(z)\mathrm{d}z=0. Cf(z)dz=0.

定理

[复合闭路]
设函数 f ( z ) f(z) f(z) n + 1 n+1 n+1连通区域 D D D上解析,且 C 0 C_0 C0 D D D的外边界, C 1 , C 2 , ⋯   , C n C_1,C_2,\cdots,C_n C1,C2,,Cn D D D的内边界,那么有
∫ C f ( z ) d z = 0 , \int_Cf(z)\mathrm{d}z=0, Cf(z)dz=0,
其中 C = C 0 + C 1 − + C 2 − + ⋯ + C n − C=C_0+C_1^-+C_2^-+\cdots+C_n^- C=C0+C1+C2++Cn,它也可以写成
∮ C 0 f ( z ) d z = ∑ i = 1 n ∮ C i f ( z ) d z . \oint_{C_0}f(z)\mathrm{d}z=\sum_{i=1}^n\oint_{C_i}f(z)\mathrm{d}z. C0f(z)dz=i=1nCif(z)dz.

Morera 定理(莫雷拉定理)是 Cauchy 积分定理的逆定理,它是说:

定理

[莫雷拉定理]
若函数 f ( z ) f(z) f(z) 在单连通区域 D D D 内连续,且对任意 D D D内的周线 C C C都有

∫ C f ( z ) d z = 0. \int_Cf(z)\mathrm{d}z=0. Cf(z)dz=0.
f ( z ) f(z) f(z) D D D内解析。

定理

[柯西积分公式]
f ( z ) f(z) f(z)在闭路 C C C及其围成的区域 D D D内解析, z 0 z_0 z0 D D D内任意一点,则
∮ C f ( z ) z − z 0 d z = 1 2 π i f ( z 0 ) \oint_{C}\frac{f(z)}{z-z_{0}}dz=\frac{1}{2 \pi i}f(z_0) Czz0f(z)dz=2πi1f(z0)

这个定理暗示了,解析函数在某一点的值,可以由沿边界曲线的积分值决定。

定理

[高阶导数公式]
f ( n ) ( z 0 ) = n ! 2 π i ∮ C f ( z ) ( z − z 0 ) n + 1 d z , n = 1 , 2 , ⋯ f^{(n)}(z_0)=\frac{n!}{2\pi i}\oint_C\frac{f(z)}{(z-z_0)^{n+1}}dz, n=1,2,\cdots f(n)(z0)=2πin!C(zz0)n+1f(z)dz,n=1,2,

这个定理表明,函数若在一点解析,那么它的所有阶导数都存在。这一个性质是实函数所不具备的。
后面的例题1.5会用到这一结论。

习题

沿下列路线计算积分 ∫ 0 3 + i z 2 d z . \int_0^{3+\mathrm{i}}z^2\mathrm{d}z. 03+iz2dz.

  • 自原点到 3+i 的直线线段;
  • 自原点沿实轴至3,再由 3 沿垂直向上至3+i;
  • 自原点沿虚轴至 i, 再由 i 水平方向右至 3+i.

解.
由解析函数积分值与路径无关的结论,直接有:
∫ 0 3 + i z 2 d z = 1 3 z 3 ∣ 0 i + 3 = 6 + 26 3 i \int_{0}^{3+i}z^{2}dz=\frac{1}{3}z^{3}|_{0}^{i+3}= 6 + \frac{26}{3}\mathrm{i} 03+iz2dz=31z30i+3=6+326i
这题本意是,参数化计算,以路径3为例
路径 3:分两段,从 0 0 0 i \mathrm{i} i,再到 3 + i 3+\mathrm{i} 3+i
第一段:从 0 0 0 i \mathrm{i} i(虚轴),路径参数化为:
z ( t ) = i t , t ∈ [ 0 , 1 ] , d z = i d t z(t) = \mathrm{i}t, \quad t \in [0,1], \quad \mathrm{d}z = \mathrm{i}\mathrm{d}t z(t)=it,t[0,1],dz=idt
z 2 = ( i t ) 2 = − t 2 z^2 = (\mathrm{i}t)^2 = -t^2 z2=(it)2=t2
积分为:
∫ 0 i z 2   d z = ∫ 0 1 ( − t 2 ) i   d t = − i ∫ 0 1 t 2   d t = − i ⋅ 1 3 = − i 3 \int_0^{\mathrm{i}} z^2 \,\mathrm{d}z = \int_0^1 (-t^2)\mathrm{i} \,\mathrm{d}t = -\mathrm{i} \int_0^1 t^2 \,\mathrm{d}t = -\mathrm{i} \cdot \frac{1}{3} = -\frac{\mathrm{i}}{3} 0iz2dz=01(t2)idt=i01t2dt=i31=3i
第二段:从 i \mathrm{i} i 3 + i 3+\mathrm{i} 3+i(水平线),路径参数化为:
z ( t ) = t + i , t ∈ [ 0 , 3 ] , d z = d t z(t) = t + \mathrm{i}, \quad t \in [0,3], \quad \mathrm{d}z = \mathrm{d}t z(t)=t+i,t[0,3],dz=dt
z 2 = ( t + i ) 2 = t 2 + 2 t i − 1 z^2 = (t + \mathrm{i})^2 = t^2 + 2t\mathrm{i} - 1 z2=(t+i)2=t2+2ti1
积分为:
∫ i 3 + i z 2   d z = ∫ 0 3 ( t 2 + 2 t i − 1 )   d t = 6 + 9 i \int_{\mathrm{i}}^{3+\mathrm{i}} z^2 \,\mathrm{d}z = \int_0^3 \big(t^2 + 2t\mathrm{i} - 1\big)\,\mathrm{d}t=6+9\mathrm{i} i3+iz2dz=03(t2+2ti1)dt=6+9i
加总两段路径:
∫ 0 3 + i z 2   d z = − i 3 + ( 6 + 9 i ) = 6 + 26 3 i \int_0^{3+\mathrm{i}} z^2 \,\mathrm{d}z = -\frac{\mathrm{i}}{3} + \left(6 + 9\mathrm{i}\right) = 6 + \frac{26}{3}\mathrm{i} 03+iz2dz=3i+(6+9i)=6+326i

习题

分别沿 y = x y=x y=x y = x 2 y=x^2 y=x2算出积分 ∫ 0 1 + i ( x 2 + i y )   d z \int_0^{1+i}(x^2+iy)\,dz 01+i(x2+iy)dz 的值

解.
沿 y = x . y=x. y=x. 此时 z = t + z=t+ z=t+i t t t ( 0 ≤ t ≤ 1 ) . ( 0 \leq t\leq 1) . (0t1). d z = ( 1 + z=(1+ z=(1+i)d t t t,于是
∫ 0 1 + i ( x 2 + i y ) d z = ∫ 0 1 ( t 2 + i t ) ( 1 + i ) d t = ( 1 + i ) ∫ 0 1 ( t 2 + i t ) d t = ( 1 + i ) ( 1 3 + i 2 ) = − 1 6 + 5 6 i \begin{aligned}\int_0^{1+\mathrm{i}}(x^2+\mathrm{i}y)\mathrm{d}z&=\int_0^1(t^2+\mathrm{i}t)(1+\mathrm{i})\mathrm{d}t\\&=(1+\mathrm{i})\int_0^1(t^2+\mathrm{i}t)\mathrm{d}t=(1+\mathrm{i})\left(\frac13+\frac{\mathrm{i}}2\right)=-\frac16+\frac56\mathrm{i}\end{aligned} 01+i(x2+iy)dz=01(t2+it)(1+i)dt=(1+i)01(t2+it)dt=(1+i)(31+2i)=61+65i
沿 y = x 2 y=x^2 y=x2,此时 z = t + z=t+ z=t+i t 2 t^2 t2 ( 0 ≤ t ≤ 1 ) . ( 0\leq t\leq 1) . (0t1). d z = ( 1 + z=(1+ z=(1+i ⋅ 2 t ) \cdot 2t) 2t)d t t t,故
∫ 0 1 + i ( x 2 + i y ) d z = ∫ 0 1 ( t 2 + i t 2 ) ( 1 + i 2 t ) d t = ( 1 + i ) ∫ 0 2 π t 2 ( 1 + i 2 t ) d t = ( 1 + i ) ∫ 0 1 ( t 2 + i 2 t 3 ) d t = ( 1 + i ) ( 1 3 + i 2 ) = − 1 6 + 5 6 i \begin{aligned}\int_{0}^{1+\mathrm{i}}(x^{2}+\mathrm{i}y)\mathrm{d}z&=\int_0^1(t^2+\mathrm{i}t^2)(1+\mathrm{i}2t)\mathrm{d}t\\&=(1+\mathrm{i})\int_0^{2\pi}t^2(1+\mathrm{i}2t)\mathrm{d}t=(1+\mathrm{i})\int_0^1(t^2+\mathrm{i}2t^3)\mathrm{d}t\\&=(1+\mathrm{i})\left(\frac{1}{3}+\frac{\mathrm{i}}{2}\right)=-\frac{1}{6}+\frac{5}{6}\mathrm{i}\end{aligned} 01+i(x2+iy)dz=01(t2+it2)(1+i2t)dt=(1+i)02πt2(1+i2t)dt=(1+i)01(t2+i2t3)dt=(1+i)(31+2i)=61+65i

习题

计算积分 ∮ C ∣ z ∣ z ˉ \oint_C|z|\bar{z} Czzˉd z z z,其中 C C C是一条闭路,由直线段:-1 ≤ x ≤ 1 , y = 0 \leq x\leq 1, y= 0 x1,y=0 与 上 半
单位圆周组成

解.
C 1 C_1 C1为直线段 − 1 ≤ x ≤ 1 -1 \leq x \leq 1 1x1 C 2 C_2 C2为上半单位圆周。
C 1 C_1 C1 x = t , t ∈ [ − 1 , 1 ] . x=t,t \in [-1,1]. x=t,t[1,1].
∫ − 1 1 ∣ t ∣ t   d t = 0 ( t ∣ t ∣ 是奇函数 ) \int_{-1}^{1} |t|t \,\mathrm{d}t =0 \quad (t|t|\text{是奇函数}) 11ttdt=0(tt是奇函数)
C 2 C_2 C2 z = e i θ ( 0 ≤ θ ≤ π ) z=e^{i\theta}\left(0\leq \theta\leq \pi\right) z=eiθ(0θπ) d z = i e i θ d θ \mathrm{d}z=\mathrm{i}e^{\mathrm{i} \theta }\mathrm{d}\theta dz=ieiθdθ
∫ 0 π e i θ i ⋅ e − i θ   d θ = π i \int_{0}^{\pi} e^{\mathrm{i}\theta }i \cdot e^{\mathrm{-i} \theta }\,\mathrm{d}\theta =\pi\mathrm{i} 0πeiθieiθdθ=πi
综述,答案为 0 + π i = π i 0+\pi \mathrm{i}=\pi\mathrm{i} 0+πi=πi

习题

设函数 f ( z ) f(z) f(z) 0 < ∣ z ∣ < 1 0<|z|<1 0<z<1内解析,且沿任何圆周 $ C:|z|=r,0<r<1$ 的积分为零,问 f ( z ) f(z) f(z)是否必须在 z = 0 z=0 z=0处解析?试举例说明.

解.
解 不一定.如令 f ( z ) = 1 z 2 f(z)=\frac1{z^2} f(z)=z21,则其在 0 < ∣ z ∣ < 1 0<|z|<1 0<z<1内解析,且沿任何圆周
C : ∣ z ∣ = r , 0 < r < 1 C:|z|=r,0<r<1 C:z=r,0<r<1 的积分

∮ C f ( z ) d z = ∮ ∣ z ∣ = r 1 z 2 d z = 0 \oint_{C}f(z)\mathrm{d}z=\oint_{|z|=r}\frac{1}{z^{2}}\mathrm{d}z=0 Cf(z)dz=z=rz21dz=0
但显然 f ( z ) = 1 z 2 f(z)=\frac1{z^2} f(z)=z21 z = 0 z=0 z=0处不解析.

习题

f ( z ) f(z) f(z)在单连通区域 D D D内解析,且不为零 , C ,C ,C D D D内任何一条简单光滑
闭曲线,问积分 ∮ C f ′ ( z ) f ( z ) \oint_C\frac{f^{\prime}(z)}{f(z)} Cf(z)f(z)d z z z 是否为零?为什么?

解.
等于零.因 f ( z ) f(z) f(z) D D D内解析,故 f ( z ) f(z) f(z)具有各阶导数且仍为解析函数,从而 f ′ ( z ) f^\prime(z) f(z) D D D内也解析.又因在 D D D f ( z ) ≠ 0 f(z)\neq0 f(z)=0,故 f ′ ( z ) f ( z ) \frac f{\prime}(z){f(z)} f(z)f(z) D D D内解析,从而在 C C C 上及 C C C的内部也解析,于是由 Cauchy-Goursat 定理,有
∮ C f ′ ( z ) f ( z ) d z = 0 \oint_{C}\frac{f^{\prime}\left(z\right)}{f\left(z\right)}dz=0 Cf(z)f(z)dz=0

习题

沿指定曲线的正向计算下列各积分
( 1 ) ∮ C e z z − 2 d z \left ( 1\right ) \oint _{C}\frac {\mathrm{e} ^{z}}{z- 2}dz (1)Cz2ezdz, C : ∣ z − 2 ∣ = 1 ; C: \left | z- 2\right | = 1; C:z2=1;

( 2 ) ∮ C cos ⁡ π z ( z − 1 ) 5 \left(2\right)\oint_{C}\frac{\cos\pi z}{\left(z-1\right)^5} (2)C(z1)5cosπzd z z z, C : ∣ z ∣ = r > 1 ; C: | z| = r> 1; C:z=r>1;

( 3 ) ∮ C sin ⁡ z ( z − π 2 ) 2 (3)\oint_{C}\frac{\sin z}{\left(z-\frac\pi2\right)^2} (3)C(z2π)2sinzd z z z, C : ∣ z ∣ = 2 ; C: | z| = 2; C:z=2;

( 4 ) ∮ C d z ( z 2 + 1 ) ( z 2 + 4 ) \left ( 4\right ) \oint _{C}\frac {\mathrm{d} z}{\left ( z^{2}+ 1\right ) \left ( z^{2}+ 4\right ) } (4)C(z2+1)(z2+4)dz, C : ∣ z ∣ = 3 2 ; C: \left | z\right | = \frac 32; C:z=23;

( 5 ) ∮ C d z z 2 − a 2 \left ( 5\right ) \oint _{C}\frac {\mathrm{d} z}{z^2- a^2} (5)Cz2a2dz, C : ∣ z − a ∣ = a ( a > 0 ) ; C: \left | z- a\right | = a\left ( a> 0\right ) ; C:za=a(a>0);

( 6 ) ∮ C e z ( z − a ) 3 \left(6\right)\oint_C\frac{\mathrm{e}^z}{(z-a)^3} (6)C(za)3ezd z z z,其中 a a a ∣ a ∣ ≠ 1 |a|\neq1 a=1 的任何复数 , C : ∣ z ∣ = 1 ; ,C:|z|=1; ,C:z=1;

( 7 ) ∮ C e − z sin ⁡ z z 2 \left(7\right)\oint_{C}\frac{\mathrm{e}^{-z}\sin z}{z^2} (7)Cz2ezsinz d z z z, C : ∣ z − C: | z- C:zi|=2;

解.
( 1 ) \left(1\right) (1)由 Cauchy 积分公式 , ∮ C e z z − 2 ,\oint_C\frac{\mathrm{e}^z}{z-2} ,Cz2ezd z = 2 π z=2\pi z=2πie z ∣ z = 2 π ^z\Bigg|_z=2\pi z z=2πe 2 ^2 2i.

( 2 ) \left(2\right) (2)由高阶求导公式, ∮ C cos ⁡ π z ( z − 1 ) 5 \oint_C\frac\cos\pi z{(z-1)^5} Cπcosz(z1)5d z = 2 π i 4 ! ( cos ⁡ π z ) ′ ′ ′ ∣ z = 1 = − π 5 12 z=\left.\frac2\pi\mathrm{i}{4!}(\cos\pi z)^{\prime\prime\prime}\right|_{z=1}=-\frac{\pi^5}{12} z=π2i4!(cosπz)′′′ z=1=12π5i.
(3) 由高阶求导公式 , ∮ C sin ⁡ z ( z − π 2 ) 2 d z = 2 π i ( sin ⁡ z ) ′ ∣ z = π 2 = 0. ,\oint_C\left.\frac{\sin z}{\left(z-\frac\pi2\right)^2}\mathrm{d}z=2\pi\mathrm{i}(\sin z)^{\prime}\right|_{z=\frac\pi2}=0. ,C(z2π)2sinzdz=2πi(sinz) z=2π=0.
(4)因被积函数的奇点 z = ± z=\pm z=±i 在 C C C的内部 , z = ± 2 ,z=\pm2 ,z=±2i 在 C C C的外部,故由复合闭
路定理及 Cauchy 积分公式有
∮ C d z ( z 2 + 1 ) ( z 2 + 4 ) = ∮ ∣ z − i ∣ = 1 3 d z ( z 2 + 1 ) ( z 2 + 4 ) + ∮ ∣ z + i ∣ = 1 3 d z ( z 2 + 1 ) ( z 2 + 4 ) = ∮ ∣ z − i ∣ = 1 3 1 ( z + i ) ( z 2 + 4 ) z − i d z + ∮ ∣ z + i ∣ = 1 3 1 ( z − i ) ( z 2 + 4 ) z + i d z = 2 π i 1 ( z + i ) ( z 2 + 4 ) ∣ z = i + 2 π i 1 ( z − i ) ( z 2 + 4 ) ∣ z = − i = π 3 − π 3 = 0 \begin{aligned}\oint_C\frac{\mathrm{d}z}{(z^2+1)(z^2+4)}&=\oint_{|z-\mathrm{i}|=\frac13}\frac{\mathrm{d}z}{(z^2+1)(z^2+4)}+\oint_{|z+\mathrm{i}|=\frac13}\frac{\mathrm{d}z}{(z^2+1)(z^2+4)}\\&=\oint_{|z-\mathrm{i}|=\frac13}\frac{\frac1{(z+\mathrm{i})(z^2+4)}}{z-\mathrm{i}}\mathrm{d}z+\oint_{|z+\mathrm{i}|=\frac13}\frac{\frac1{(z-\mathrm{i})(z^2+4)}}{z+\mathrm{i}}\mathrm{d}z\\&=2\pi\mathrm{i}\frac1{(z+\mathrm{i})(z^2+4)}\Bigg|_{z=\mathrm{i}}+2\pi\mathrm{i}\frac1{(z-\mathrm{i})(z^2+4)}\Bigg|_{z=-\mathrm{i}}\\&=\frac\pi3-\frac\pi3=0\end{aligned} C(z2+1)(z2+4)dz=zi=31(z2+1)(z2+4)dz+z+i=31(z2+1)(z2+4)dz=zi=31zi(z+i)(z2+4)1dz+z+i=31z+i(zi)(z2+4)1dz=2πi(z+i)(z2+4)1 z=i+2πi(zi)(z2+4)1 z=i=3π3π=0
(5)方法 1 ∮ C d z z 2 − a 2 = ∮ C z + a z − a d z = 2 π i 1 z + a ∣ z = a = π a \oint_C\frac{\mathrm{d}z}{z^2-a^2}=\oint_C\left.\frac{z+a}{z-a}\mathrm{d}z=2\pi\mathrm{i}\frac1{z+a}\right|_{z=a}=\frac\pi a Cz2a2dz=Czaz+adz=2πiz+a1 z=a=aπi
方法 2
∮ C d z z 2 − a 2 = 1 2 a [ ∮ C 1 z − a d z − ∮ C 1 z + a d z ] = 1 2 a [ 2 π i − 0 ] = π a i \begin{aligned}\oint_{C}\frac{\mathrm{d}z}{z^{2}-a^{2}}=&\frac{1}{2a}\left[\oint_{C}\frac{1}{z-a}\mathrm{d}z-\oint_{C}\frac{1}{z+a}\mathrm{d}z\right]\\=&\frac{1}{2a}[2\pi\mathrm{i}-0]=\frac{\pi}{a}\mathrm{i}\end{aligned} Cz2a2dz==2a1[Cza1dzCz+a1dz]2a1[2πi0]=aπi
( 6 ) 当 ∣ a ∣ < 1 时, a (6)\text{当}|a|<1\text{时},a (6)a<1a C C C 的内部,故由高阶求导公式得
∮ C e z ( z − a ) 3 d z = 2 π i 2 ! ( e z ) ′ ′ ∣ z = a = π e a i \oint_C\frac{\mathrm{e}^z}{(z-a)^3}\mathrm{d}z=\left.\frac{2\pi\mathrm{i}}{2!}(\mathrm{e}^z)^{\prime\prime}\right|_{z=a}=\pi\mathrm{e}^a\mathrm{i} C(za)3ezdz=2!2πi(ez)′′ z=a=πeai
∣ a ∣ > 1 |a|>1 a>1 , a ,a ,a C C C的外部,故由 Cauchy-Goursat 定理得
∮ C e z ( z − a ) 3 d z = 0 \oint_{C}\frac{\mathrm{e}^{z}}{(z-a)^{3}}\mathrm{d}z=0 C(za)3ezdz=0
(7)由 Cauchy 积分公式得
∮ C e − z sin ⁡ z z 2 d z = 2 π i ( e − z sin ⁡ z ) ′ ∣ z = 0 = 2 π i \oint_{C}\frac{\mathrm{e}^{-z}\sin z}{z^{2}}\mathrm{d}z=2\pi\mathrm{i}(\mathrm{e}^{-z}\sin z)^{\prime}\bigg|_{z=0}=2\pi\mathrm{i} Cz2ezsinzdz=2πi(ezsinz) z=0=2πi

习题

设函数 f ( z ) f(z) f(z) ∣ z ∣ ≤ 1 |z| \leq 1 z1上解析,且 f ( 0 ) = 1. f(0)=1. f(0)=1.计算积分
1 2 π i ∮ ∣ z ∣ = 1 { 2 ± ( z + 1 z ) } f ( z ) d z z \frac{1}{2\pi\mathrm{i}}\oint_{|z|=1}\left\{2\pm\left(z+\frac{1}{z}\right)\right\}f(z)\frac{\mathrm{d}z}{z} 2πi1z=1{2±(z+z1)}f(z)zdz
再利用极坐标导出下式
2 π ∫ 0 2 π f ( e i θ ) cos ⁡ 2 θ 2 d θ = 2 + f ′ ( 0 ) \frac2\pi\int_0^{2\pi}f(\mathrm{e}^{\mathrm{i}\theta})\cos^2\frac\theta2\mathrm{d}\theta=2+f^{\prime}(0) π202πf(eiθ)cos22θdθ=2+f(0)
2 π ∫ 0 2 π f ( e i θ ) sin ⁡ 2 θ 2 d θ = 2 − f ′ ( 0 ) \frac2\pi\int_0^{2\pi}f(\mathrm{e}^{\mathrm{i}\theta})\sin^2\frac\theta2\mathrm{d}\theta=2-f^{\prime}(0) π202πf(eiθ)sin22θdθ=2f(0)

解.
由 Cauchy 积分公式及高阶求导公式得
1 2 π i ∮ ∣ z ∣ = 1 { 2 ± ( z + 1 z ) } f ( z ) d z z = 1 2 π i ∮ ∣ z ∣ = 1 2 f ( z ) z d z ± 1 2 π i ∮ ∣ z ∣ = 1 ( z 2 + 1 ) f ( z ) z 2 d z = 2 f ( 0 ) ± [ ( z 2 + 1 ) f ( z ) ] ′ ∣ z = 0 = 2 ± f ′ ( 0 ) \begin{aligned}&\frac{1}{2\pi\mathrm{i}}\oint_{|z|=1}\left\{2\pm\left(z+\frac{1}{z}\right)\right\}f(z)\frac{\mathrm{d}z}{z}\\&=\frac{1}{2\pi\mathrm{i}}\oint_{|z|=1}\frac{2f(z)}{z}\mathrm{d}z\pm\frac{1}{2\pi\mathrm{i}}\oint_{|z|=1}\frac{(z^{2}+1)f(z)}{z^{2}}\mathrm{d}z\\&=2f(0)\pm\left[(z^2+1)f(z)\right]^{\prime}|_{z=0}\\&=2\pm f^{\prime}(0)\end{aligned} 2πi1z=1{2±(z+z1)}f(z)zdz=2πi1z=1z2f(z)dz±2πi1z=1z2(z2+1)f(z)dz=2f(0)±[(z2+1)f(z)]z=0=2±f(0)
由复积分计算公式,有
1 2 π i ∮ ∣ z ∣ = 1 { 2 ± ( z + 1 z ) } f ( z ) d z z \frac1{2\pi\mathrm{i}}\oint_{|z|=1}\left\{2\pm\left(z+\frac1z\right)\right\}f(z)\frac{\mathrm{d}z}z 2πi1z=1{2±(z+z1)}f(z)zdz

= 1 2 π i ∫ 0 2 π { 2 ± ( e i θ + e − i θ ) } f ( e i θ ) i d θ = 1 π ∫ 0 2 π ( 1 ± cos ⁡ θ ) f ( e i θ ) d θ \begin{aligned}&=\frac{1}{2\pi\mathrm{i}}\int_{0}^{2\pi}\{2\pm(\mathrm{e}^{\mathrm{i}\theta}+\mathrm{e}^{-\mathrm{i}\theta})\}f(\mathrm{e}^{\mathrm{i}\theta})\mathrm{i}\mathrm{d}\theta\\&=\frac{1}{\pi}\int_{0}^{2\pi}(1\pm\cos\theta)f(\mathrm{e}^{\mathrm{i}\theta})\mathrm{d}\theta\end{aligned} =2πi102π{2±(eiθ+eiθ)}f(eiθ)idθ=π102π(1±cosθ)f(eiθ)dθ
1 π ∫ 0 2 π ( 1 ± cos ⁡ θ ) f ( e i θ ) d θ = 2 ± f ′ ( 0 ) \frac1\pi\int_0^{2\pi}(1\pm\cos\theta)f(\mathrm{e}^{\mathrm{i}\theta})\mathrm{d}\theta=2\pm f^{\prime}(0) π102π(1±cosθ)f(eiθ)dθ=2±f(0)
又因 1 + cos ⁡ θ = 2 cos ⁡ 2 θ 2 , 1 − cos ⁡ θ = 2 sin ⁡ 2 θ 2 1+\cos\theta=2\cos^{2}\frac\theta2,1-\cos\theta=2\sin^{2}\frac\theta2 1+cosθ=2cos22θ,1cosθ=2sin22θ,于是有
2 π ∫ 0 2 π f ( e i θ ) cos ⁡ 2 θ 2 d θ = 2 + f ′ ( 0 ) \frac2\pi\int_0^{2\pi}f(\mathrm{e}^{\mathrm{i}\theta})\cos^2\frac\theta2\mathrm{d}\theta=2+f^{\prime}(0) π202πf(eiθ)cos22θdθ=2+f(0)
2 π ∫ 0 2 π f ( e i θ ) sin ⁡ 2 θ 2 d θ = 2 − f ′ ( 0 ) \frac2\pi\int_0^{2\pi}f(\mathrm{e}^{\mathrm{i}\theta})\sin^2\frac\theta2\mathrm{d}\theta=2-f^{\prime}(0) π202πf(eiθ)sin22θdθ=2f(0)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值