积分计算公式
首先,因为 z = x + i y , d z = d x + i d y z=x+\mathrm{i}y,\mathrm{d}z=\mathrm{d}x+\mathrm{id}y z=x+iy,dz=dx+idy,那么 ∫ C f ( z ) d z \int_C f(z)dz ∫Cf(z)dz就可以被转化成实变函数中的第二类曲线积分。
定理
[复变函数积分与第二类曲线积分的关系]
如果
f
(
z
)
=
u
(
x
,
y
)
+
i
v
(
x
,
y
)
,
z
=
x
+
i
y
,
x
,
y
∈
R
f(z)=u(x,y)+\mathrm{i}v(x,y),z=x+ iy,x,y \in \mathrm{R}
f(z)=u(x,y)+iv(x,y),z=x+iy,x,y∈R 沿
C
C
C连续且
f
(
z
)
f(z)
f(z)可积,那么有公式
∫
C
f
(
z
)
d
z
=
∫
C
u
d
x
−
v
d
y
+
i
∫
C
v
d
x
+
u
d
y
.
\int_Cf(z)\mathrm{d}z=\int_Cu\mathrm{d}x-v\mathrm{d}y+\mathrm{i}\int_Cv\mathrm{d}x+u\mathrm{d}y.
∫Cf(z)dz=∫Cudx−vdy+i∫Cvdx+udy.
但是这种办法计算量比较繁琐。如果积分曲线知道了,那么由于
f
(
z
)
f(z)
f(z)在
C
C
C上有定义,可以根据
C
C
C的方程
参数化计算。例如在单位圆上积分时,就可以根据
r
=
1
r=1
r=1,从而设
z
=
e
i
θ
z=e^{i\theta}
z=eiθ。
后面的例题,一开始的很多题都会使用参数化的办法。
原函数与不定积分
设 f ( z ) f(z) f(z)为单连通区域 B B B内的一解析函数,而 C 1 C_1 C1和 C 2 C_2 C2为在 B B B内连接点 z 0 z_0 z0与 z z z的任意两条路径,
则有 ∫ C 1 f ( z ) d z = ∫ C 2 f ( z ) d z \int_{C_1} f(z)\mathrm{d}z=\int_{C_2}f(z)\mathrm{d}z ∫C1f(z)dz=∫C2f(z)dz,即单连通区域内解析函数的积分与积分路径无关
设 f ( z ) f(z) f(z)在单连通区域 B B B内解析,则 F ( z ) = ∫ z 0 z f ( ζ ) F(z)=\int_{z_0}^z f(\zeta) F(z)=∫z0zf(ζ)d ζ ( \zeta( ζ(因为积分与路径无关,故当 z 0 ∈ B z_0\in B z0∈B固定时 , F ( z ) ,F(z) ,F(z)为 z z z的单值函数) 也在 B B B内解析,且 F ′ ( z ) = f ( z ) . F^\prime(z)=f(z). F′(z)=f(z).
同实函数的情形一样,我们称 F ( z ) F(z) F(z)为 f ( z ) f(z) f(z)的一个原函数
定理
[Newton-Leibniz公式]
∫
z
1
z
2
f
(
z
)
d
z
=
F
(
z
2
)
−
F
(
z
1
)
(
z
1
,
z
2
∈
B
)
\int_{z_1}^{z_2}f(z)\mathrm{d}z=F(z_2)-F(z_1)\quad(z_1,z_2\in B)
∫z1z2f(z)dz=F(z2)−F(z1)(z1,z2∈B)
柯西积分定理与公式
定理
[柯西积分定理]
设函数
f
(
z
)
f(z)
f(z)在单连通区域
D
D
D上解析,且
C
C
C是
D
D
D中任意一条可求长的闭曲线,那么有
∮
C
f
(
z
)
d
z
=
0.
\oint_Cf(z)\mathrm{d}z=0.
∮Cf(z)dz=0.
上述定理等价于
设有简单闭曲线
C
C
C ,
D
D
D是
C
C
C的内部,函数
f
(
z
)
f(z)
f(z)在闭包
D
‾
=
D
+
C
\overline{D}=D+C
D=D+C上解析,那么有
∮
C
f
(
z
)
d
z
=
0.
\oint_Cf(z)\mathrm{d}z=0.
∮Cf(z)dz=0.
上述定理略加推广,可以得到下面更有用的定理:
设有简单闭曲线
C
C
C,
D
D
D是
C
C
C的内部,函数
f
(
z
)
f(z)
f(z)在区域
D
D
D上解析,在
C
C
C上连续,那么有
∮
C
f
(
z
)
d
z
=
0.
\oint_Cf(z)\mathrm{d}z=0.
∮Cf(z)dz=0.
定理
[复合闭路]
设函数
f
(
z
)
f(z)
f(z)在
n
+
1
n+1
n+1连通区域
D
D
D上解析,且
C
0
C_0
C0是
D
D
D的外边界,
C
1
,
C
2
,
⋯
,
C
n
C_1,C_2,\cdots,C_n
C1,C2,⋯,Cn是
D
D
D的内边界,那么有
∫
C
f
(
z
)
d
z
=
0
,
\int_Cf(z)\mathrm{d}z=0,
∫Cf(z)dz=0,
其中
C
=
C
0
+
C
1
−
+
C
2
−
+
⋯
+
C
n
−
C=C_0+C_1^-+C_2^-+\cdots+C_n^-
C=C0+C1−+C2−+⋯+Cn−,它也可以写成
∮
C
0
f
(
z
)
d
z
=
∑
i
=
1
n
∮
C
i
f
(
z
)
d
z
.
\oint_{C_0}f(z)\mathrm{d}z=\sum_{i=1}^n\oint_{C_i}f(z)\mathrm{d}z.
∮C0f(z)dz=i=1∑n∮Cif(z)dz.
Morera 定理(莫雷拉定理)是 Cauchy 积分定理的逆定理,它是说:
定理
[莫雷拉定理]
若函数
f
(
z
)
f(z)
f(z) 在单连通区域
D
D
D 内连续,且对任意
D
D
D内的周线
C
C
C都有
∫
C
f
(
z
)
d
z
=
0.
\int_Cf(z)\mathrm{d}z=0.
∫Cf(z)dz=0.
则
f
(
z
)
f(z)
f(z)在
D
D
D内解析。
定理
[柯西积分公式]
设
f
(
z
)
f(z)
f(z)在闭路
C
C
C及其围成的区域
D
D
D内解析,
z
0
z_0
z0是
D
D
D内任意一点,则
∮
C
f
(
z
)
z
−
z
0
d
z
=
1
2
π
i
f
(
z
0
)
\oint_{C}\frac{f(z)}{z-z_{0}}dz=\frac{1}{2 \pi i}f(z_0)
∮Cz−z0f(z)dz=2πi1f(z0)
这个定理暗示了,解析函数在某一点的值,可以由沿边界曲线的积分值决定。
定理
[高阶导数公式]
f
(
n
)
(
z
0
)
=
n
!
2
π
i
∮
C
f
(
z
)
(
z
−
z
0
)
n
+
1
d
z
,
n
=
1
,
2
,
⋯
f^{(n)}(z_0)=\frac{n!}{2\pi i}\oint_C\frac{f(z)}{(z-z_0)^{n+1}}dz, n=1,2,\cdots
f(n)(z0)=2πin!∮C(z−z0)n+1f(z)dz,n=1,2,⋯
这个定理表明,函数若在一点解析,那么它的所有阶导数都存在。这一个性质是实函数所不具备的。
后面的例题1.5会用到这一结论。
习题
沿下列路线计算积分 ∫ 0 3 + i z 2 d z . \int_0^{3+\mathrm{i}}z^2\mathrm{d}z. ∫03+iz2dz.
- 自原点到 3+i 的直线线段;
- 自原点沿实轴至3,再由 3 沿垂直向上至3+i;
- 自原点沿虚轴至 i, 再由 i 水平方向右至 3+i.
解.
由解析函数积分值与路径无关的结论,直接有:
∫
0
3
+
i
z
2
d
z
=
1
3
z
3
∣
0
i
+
3
=
6
+
26
3
i
\int_{0}^{3+i}z^{2}dz=\frac{1}{3}z^{3}|_{0}^{i+3}= 6 + \frac{26}{3}\mathrm{i}
∫03+iz2dz=31z3∣0i+3=6+326i
这题本意是,参数化计算,以路径3为例
路径 3:分两段,从
0
0
0 到
i
\mathrm{i}
i,再到
3
+
i
3+\mathrm{i}
3+i。
第一段:从
0
0
0 到
i
\mathrm{i}
i(虚轴),路径参数化为:
z
(
t
)
=
i
t
,
t
∈
[
0
,
1
]
,
d
z
=
i
d
t
z(t) = \mathrm{i}t, \quad t \in [0,1], \quad \mathrm{d}z = \mathrm{i}\mathrm{d}t
z(t)=it,t∈[0,1],dz=idt
z
2
=
(
i
t
)
2
=
−
t
2
z^2 = (\mathrm{i}t)^2 = -t^2
z2=(it)2=−t2
积分为:
∫
0
i
z
2
d
z
=
∫
0
1
(
−
t
2
)
i
d
t
=
−
i
∫
0
1
t
2
d
t
=
−
i
⋅
1
3
=
−
i
3
\int_0^{\mathrm{i}} z^2 \,\mathrm{d}z = \int_0^1 (-t^2)\mathrm{i} \,\mathrm{d}t = -\mathrm{i} \int_0^1 t^2 \,\mathrm{d}t = -\mathrm{i} \cdot \frac{1}{3} = -\frac{\mathrm{i}}{3}
∫0iz2dz=∫01(−t2)idt=−i∫01t2dt=−i⋅31=−3i
第二段:从
i
\mathrm{i}
i 到
3
+
i
3+\mathrm{i}
3+i(水平线),路径参数化为:
z
(
t
)
=
t
+
i
,
t
∈
[
0
,
3
]
,
d
z
=
d
t
z(t) = t + \mathrm{i}, \quad t \in [0,3], \quad \mathrm{d}z = \mathrm{d}t
z(t)=t+i,t∈[0,3],dz=dt
z
2
=
(
t
+
i
)
2
=
t
2
+
2
t
i
−
1
z^2 = (t + \mathrm{i})^2 = t^2 + 2t\mathrm{i} - 1
z2=(t+i)2=t2+2ti−1
积分为:
∫
i
3
+
i
z
2
d
z
=
∫
0
3
(
t
2
+
2
t
i
−
1
)
d
t
=
6
+
9
i
\int_{\mathrm{i}}^{3+\mathrm{i}} z^2 \,\mathrm{d}z = \int_0^3 \big(t^2 + 2t\mathrm{i} - 1\big)\,\mathrm{d}t=6+9\mathrm{i}
∫i3+iz2dz=∫03(t2+2ti−1)dt=6+9i
加总两段路径:
∫
0
3
+
i
z
2
d
z
=
−
i
3
+
(
6
+
9
i
)
=
6
+
26
3
i
\int_0^{3+\mathrm{i}} z^2 \,\mathrm{d}z = -\frac{\mathrm{i}}{3} + \left(6 + 9\mathrm{i}\right) = 6 + \frac{26}{3}\mathrm{i}
∫03+iz2dz=−3i+(6+9i)=6+326i
习题
分别沿 y = x y=x y=x与 y = x 2 y=x^2 y=x2算出积分 ∫ 0 1 + i ( x 2 + i y ) d z \int_0^{1+i}(x^2+iy)\,dz ∫01+i(x2+iy)dz 的值
解.
沿
y
=
x
.
y=x.
y=x. 此时
z
=
t
+
z=t+
z=t+i
t
t
t
(
0
≤
t
≤
1
)
.
( 0 \leq t\leq 1) .
(0≤t≤1). d
z
=
(
1
+
z=(1+
z=(1+i)d
t
t
t,于是
∫
0
1
+
i
(
x
2
+
i
y
)
d
z
=
∫
0
1
(
t
2
+
i
t
)
(
1
+
i
)
d
t
=
(
1
+
i
)
∫
0
1
(
t
2
+
i
t
)
d
t
=
(
1
+
i
)
(
1
3
+
i
2
)
=
−
1
6
+
5
6
i
\begin{aligned}\int_0^{1+\mathrm{i}}(x^2+\mathrm{i}y)\mathrm{d}z&=\int_0^1(t^2+\mathrm{i}t)(1+\mathrm{i})\mathrm{d}t\\&=(1+\mathrm{i})\int_0^1(t^2+\mathrm{i}t)\mathrm{d}t=(1+\mathrm{i})\left(\frac13+\frac{\mathrm{i}}2\right)=-\frac16+\frac56\mathrm{i}\end{aligned}
∫01+i(x2+iy)dz=∫01(t2+it)(1+i)dt=(1+i)∫01(t2+it)dt=(1+i)(31+2i)=−61+65i
沿
y
=
x
2
y=x^2
y=x2,此时
z
=
t
+
z=t+
z=t+i
t
2
t^2
t2
(
0
≤
t
≤
1
)
.
( 0\leq t\leq 1) .
(0≤t≤1). d
z
=
(
1
+
z=(1+
z=(1+i
⋅
2
t
)
\cdot 2t)
⋅2t)d
t
t
t,故
∫
0
1
+
i
(
x
2
+
i
y
)
d
z
=
∫
0
1
(
t
2
+
i
t
2
)
(
1
+
i
2
t
)
d
t
=
(
1
+
i
)
∫
0
2
π
t
2
(
1
+
i
2
t
)
d
t
=
(
1
+
i
)
∫
0
1
(
t
2
+
i
2
t
3
)
d
t
=
(
1
+
i
)
(
1
3
+
i
2
)
=
−
1
6
+
5
6
i
\begin{aligned}\int_{0}^{1+\mathrm{i}}(x^{2}+\mathrm{i}y)\mathrm{d}z&=\int_0^1(t^2+\mathrm{i}t^2)(1+\mathrm{i}2t)\mathrm{d}t\\&=(1+\mathrm{i})\int_0^{2\pi}t^2(1+\mathrm{i}2t)\mathrm{d}t=(1+\mathrm{i})\int_0^1(t^2+\mathrm{i}2t^3)\mathrm{d}t\\&=(1+\mathrm{i})\left(\frac{1}{3}+\frac{\mathrm{i}}{2}\right)=-\frac{1}{6}+\frac{5}{6}\mathrm{i}\end{aligned}
∫01+i(x2+iy)dz=∫01(t2+it2)(1+i2t)dt=(1+i)∫02πt2(1+i2t)dt=(1+i)∫01(t2+i2t3)dt=(1+i)(31+2i)=−61+65i
习题
计算积分
∮
C
∣
z
∣
z
ˉ
\oint_C|z|\bar{z}
∮C∣z∣zˉd
z
z
z,其中
C
C
C是一条闭路,由直线段:-1
≤
x
≤
1
,
y
=
0
\leq x\leq 1, y= 0
≤x≤1,y=0 与 上 半
单位圆周组成
解.
设
C
1
C_1
C1为直线段
−
1
≤
x
≤
1
-1 \leq x \leq 1
−1≤x≤1,
C
2
C_2
C2为上半单位圆周。
在
C
1
C_1
C1,
x
=
t
,
t
∈
[
−
1
,
1
]
.
x=t,t \in [-1,1].
x=t,t∈[−1,1].
∫
−
1
1
∣
t
∣
t
d
t
=
0
(
t
∣
t
∣
是奇函数
)
\int_{-1}^{1} |t|t \,\mathrm{d}t =0 \quad (t|t|\text{是奇函数})
∫−11∣t∣tdt=0(t∣t∣是奇函数)
在
C
2
C_2
C2 ,
z
=
e
i
θ
(
0
≤
θ
≤
π
)
z=e^{i\theta}\left(0\leq \theta\leq \pi\right)
z=eiθ(0≤θ≤π),
d
z
=
i
e
i
θ
d
θ
\mathrm{d}z=\mathrm{i}e^{\mathrm{i} \theta }\mathrm{d}\theta
dz=ieiθdθ
∫
0
π
e
i
θ
i
⋅
e
−
i
θ
d
θ
=
π
i
\int_{0}^{\pi} e^{\mathrm{i}\theta }i \cdot e^{\mathrm{-i} \theta }\,\mathrm{d}\theta =\pi\mathrm{i}
∫0πeiθi⋅e−iθdθ=πi
综述,答案为
0
+
π
i
=
π
i
0+\pi \mathrm{i}=\pi\mathrm{i}
0+πi=πi
习题
设函数 f ( z ) f(z) f(z)在 0 < ∣ z ∣ < 1 0<|z|<1 0<∣z∣<1内解析,且沿任何圆周 $ C:|z|=r,0<r<1$ 的积分为零,问 f ( z ) f(z) f(z)是否必须在 z = 0 z=0 z=0处解析?试举例说明.
解.
解 不一定.如令
f
(
z
)
=
1
z
2
f(z)=\frac1{z^2}
f(z)=z21,则其在
0
<
∣
z
∣
<
1
0<|z|<1
0<∣z∣<1内解析,且沿任何圆周
C
:
∣
z
∣
=
r
,
0
<
r
<
1
C:|z|=r,0<r<1
C:∣z∣=r,0<r<1 的积分
∮
C
f
(
z
)
d
z
=
∮
∣
z
∣
=
r
1
z
2
d
z
=
0
\oint_{C}f(z)\mathrm{d}z=\oint_{|z|=r}\frac{1}{z^{2}}\mathrm{d}z=0
∮Cf(z)dz=∮∣z∣=rz21dz=0
但显然
f
(
z
)
=
1
z
2
f(z)=\frac1{z^2}
f(z)=z21在
z
=
0
z=0
z=0处不解析.
习题
设
f
(
z
)
f(z)
f(z)在单连通区域
D
D
D内解析,且不为零
,
C
,C
,C为
D
D
D内任何一条简单光滑
闭曲线,问积分
∮
C
f
′
(
z
)
f
(
z
)
\oint_C\frac{f^{\prime}(z)}{f(z)}
∮Cf(z)f′(z)d
z
z
z 是否为零?为什么?
解.
等于零.因
f
(
z
)
f(z)
f(z)在
D
D
D内解析,故
f
(
z
)
f(z)
f(z)具有各阶导数且仍为解析函数,从而
f
′
(
z
)
f^\prime(z)
f′(z)在
D
D
D内也解析.又因在
D
D
D内
f
(
z
)
≠
0
f(z)\neq0
f(z)=0,故
f
′
(
z
)
f
(
z
)
\frac f{\prime}(z){f(z)}
′f(z)f(z)在
D
D
D内解析,从而在
C
C
C 上及
C
C
C的内部也解析,于是由 Cauchy-Goursat 定理,有
∮
C
f
′
(
z
)
f
(
z
)
d
z
=
0
\oint_{C}\frac{f^{\prime}\left(z\right)}{f\left(z\right)}dz=0
∮Cf(z)f′(z)dz=0
习题
沿指定曲线的正向计算下列各积分
(
1
)
∮
C
e
z
z
−
2
d
z
\left ( 1\right ) \oint _{C}\frac {\mathrm{e} ^{z}}{z- 2}dz
(1)∮Cz−2ezdz,
C
:
∣
z
−
2
∣
=
1
;
C: \left | z- 2\right | = 1;
C:∣z−2∣=1;
( 2 ) ∮ C cos π z ( z − 1 ) 5 \left(2\right)\oint_{C}\frac{\cos\pi z}{\left(z-1\right)^5} (2)∮C(z−1)5cosπzd z z z, C : ∣ z ∣ = r > 1 ; C: | z| = r> 1; C:∣z∣=r>1;
( 3 ) ∮ C sin z ( z − π 2 ) 2 (3)\oint_{C}\frac{\sin z}{\left(z-\frac\pi2\right)^2} (3)∮C(z−2π)2sinzd z z z, C : ∣ z ∣ = 2 ; C: | z| = 2; C:∣z∣=2;
( 4 ) ∮ C d z ( z 2 + 1 ) ( z 2 + 4 ) \left ( 4\right ) \oint _{C}\frac {\mathrm{d} z}{\left ( z^{2}+ 1\right ) \left ( z^{2}+ 4\right ) } (4)∮C(z2+1)(z2+4)dz, C : ∣ z ∣ = 3 2 ; C: \left | z\right | = \frac 32; C:∣z∣=23;
( 5 ) ∮ C d z z 2 − a 2 \left ( 5\right ) \oint _{C}\frac {\mathrm{d} z}{z^2- a^2} (5)∮Cz2−a2dz, C : ∣ z − a ∣ = a ( a > 0 ) ; C: \left | z- a\right | = a\left ( a> 0\right ) ; C:∣z−a∣=a(a>0);
( 6 ) ∮ C e z ( z − a ) 3 \left(6\right)\oint_C\frac{\mathrm{e}^z}{(z-a)^3} (6)∮C(z−a)3ezd z z z,其中 a a a 为 ∣ a ∣ ≠ 1 |a|\neq1 ∣a∣=1 的任何复数 , C : ∣ z ∣ = 1 ; ,C:|z|=1; ,C:∣z∣=1;
( 7 ) ∮ C e − z sin z z 2 \left(7\right)\oint_{C}\frac{\mathrm{e}^{-z}\sin z}{z^2} (7)∮Cz2e−zsinz d z z z, C : ∣ z − C: | z- C:∣z−i|=2;
解.
(
1
)
\left(1\right)
(1)由 Cauchy 积分公式
,
∮
C
e
z
z
−
2
,\oint_C\frac{\mathrm{e}^z}{z-2}
,∮Cz−2ezd
z
=
2
π
z=2\pi
z=2πie
z
∣
z
=
2
π
^z\Bigg|_z=2\pi
z
z=2πe
2
^2
2i.
(
2
)
\left(2\right)
(2)由高阶求导公式,
∮
C
cos
π
z
(
z
−
1
)
5
\oint_C\frac\cos\pi z{(z-1)^5}
∮Cπcosz(z−1)5d
z
=
2
π
i
4
!
(
cos
π
z
)
′
′
′
∣
z
=
1
=
−
π
5
12
z=\left.\frac2\pi\mathrm{i}{4!}(\cos\pi z)^{\prime\prime\prime}\right|_{z=1}=-\frac{\pi^5}{12}
z=π2i4!(cosπz)′′′
z=1=−12π5i.
(3) 由高阶求导公式
,
∮
C
sin
z
(
z
−
π
2
)
2
d
z
=
2
π
i
(
sin
z
)
′
∣
z
=
π
2
=
0.
,\oint_C\left.\frac{\sin z}{\left(z-\frac\pi2\right)^2}\mathrm{d}z=2\pi\mathrm{i}(\sin z)^{\prime}\right|_{z=\frac\pi2}=0.
,∮C(z−2π)2sinzdz=2πi(sinz)′
z=2π=0.
(4)因被积函数的奇点
z
=
±
z=\pm
z=±i 在
C
C
C的内部
,
z
=
±
2
,z=\pm2
,z=±2i 在
C
C
C的外部,故由复合闭
路定理及 Cauchy 积分公式有
∮
C
d
z
(
z
2
+
1
)
(
z
2
+
4
)
=
∮
∣
z
−
i
∣
=
1
3
d
z
(
z
2
+
1
)
(
z
2
+
4
)
+
∮
∣
z
+
i
∣
=
1
3
d
z
(
z
2
+
1
)
(
z
2
+
4
)
=
∮
∣
z
−
i
∣
=
1
3
1
(
z
+
i
)
(
z
2
+
4
)
z
−
i
d
z
+
∮
∣
z
+
i
∣
=
1
3
1
(
z
−
i
)
(
z
2
+
4
)
z
+
i
d
z
=
2
π
i
1
(
z
+
i
)
(
z
2
+
4
)
∣
z
=
i
+
2
π
i
1
(
z
−
i
)
(
z
2
+
4
)
∣
z
=
−
i
=
π
3
−
π
3
=
0
\begin{aligned}\oint_C\frac{\mathrm{d}z}{(z^2+1)(z^2+4)}&=\oint_{|z-\mathrm{i}|=\frac13}\frac{\mathrm{d}z}{(z^2+1)(z^2+4)}+\oint_{|z+\mathrm{i}|=\frac13}\frac{\mathrm{d}z}{(z^2+1)(z^2+4)}\\&=\oint_{|z-\mathrm{i}|=\frac13}\frac{\frac1{(z+\mathrm{i})(z^2+4)}}{z-\mathrm{i}}\mathrm{d}z+\oint_{|z+\mathrm{i}|=\frac13}\frac{\frac1{(z-\mathrm{i})(z^2+4)}}{z+\mathrm{i}}\mathrm{d}z\\&=2\pi\mathrm{i}\frac1{(z+\mathrm{i})(z^2+4)}\Bigg|_{z=\mathrm{i}}+2\pi\mathrm{i}\frac1{(z-\mathrm{i})(z^2+4)}\Bigg|_{z=-\mathrm{i}}\\&=\frac\pi3-\frac\pi3=0\end{aligned}
∮C(z2+1)(z2+4)dz=∮∣z−i∣=31(z2+1)(z2+4)dz+∮∣z+i∣=31(z2+1)(z2+4)dz=∮∣z−i∣=31z−i(z+i)(z2+4)1dz+∮∣z+i∣=31z+i(z−i)(z2+4)1dz=2πi(z+i)(z2+4)1
z=i+2πi(z−i)(z2+4)1
z=−i=3π−3π=0
(5)方法 1
∮
C
d
z
z
2
−
a
2
=
∮
C
z
+
a
z
−
a
d
z
=
2
π
i
1
z
+
a
∣
z
=
a
=
π
a
\oint_C\frac{\mathrm{d}z}{z^2-a^2}=\oint_C\left.\frac{z+a}{z-a}\mathrm{d}z=2\pi\mathrm{i}\frac1{z+a}\right|_{z=a}=\frac\pi a
∮Cz2−a2dz=∮Cz−az+adz=2πiz+a1
z=a=aπi
方法 2
∮
C
d
z
z
2
−
a
2
=
1
2
a
[
∮
C
1
z
−
a
d
z
−
∮
C
1
z
+
a
d
z
]
=
1
2
a
[
2
π
i
−
0
]
=
π
a
i
\begin{aligned}\oint_{C}\frac{\mathrm{d}z}{z^{2}-a^{2}}=&\frac{1}{2a}\left[\oint_{C}\frac{1}{z-a}\mathrm{d}z-\oint_{C}\frac{1}{z+a}\mathrm{d}z\right]\\=&\frac{1}{2a}[2\pi\mathrm{i}-0]=\frac{\pi}{a}\mathrm{i}\end{aligned}
∮Cz2−a2dz==2a1[∮Cz−a1dz−∮Cz+a1dz]2a1[2πi−0]=aπi
(
6
)
当
∣
a
∣
<
1
时,
a
(6)\text{当}|a|<1\text{时},a
(6)当∣a∣<1时,a 在
C
C
C 的内部,故由高阶求导公式得
∮
C
e
z
(
z
−
a
)
3
d
z
=
2
π
i
2
!
(
e
z
)
′
′
∣
z
=
a
=
π
e
a
i
\oint_C\frac{\mathrm{e}^z}{(z-a)^3}\mathrm{d}z=\left.\frac{2\pi\mathrm{i}}{2!}(\mathrm{e}^z)^{\prime\prime}\right|_{z=a}=\pi\mathrm{e}^a\mathrm{i}
∮C(z−a)3ezdz=2!2πi(ez)′′
z=a=πeai
当
∣
a
∣
>
1
|a|>1
∣a∣>1时
,
a
,a
,a在
C
C
C的外部,故由 Cauchy-Goursat 定理得
∮
C
e
z
(
z
−
a
)
3
d
z
=
0
\oint_{C}\frac{\mathrm{e}^{z}}{(z-a)^{3}}\mathrm{d}z=0
∮C(z−a)3ezdz=0
(7)由 Cauchy 积分公式得
∮
C
e
−
z
sin
z
z
2
d
z
=
2
π
i
(
e
−
z
sin
z
)
′
∣
z
=
0
=
2
π
i
\oint_{C}\frac{\mathrm{e}^{-z}\sin z}{z^{2}}\mathrm{d}z=2\pi\mathrm{i}(\mathrm{e}^{-z}\sin z)^{\prime}\bigg|_{z=0}=2\pi\mathrm{i}
∮Cz2e−zsinzdz=2πi(e−zsinz)′
z=0=2πi
习题
设函数
f
(
z
)
f(z)
f(z)在
∣
z
∣
≤
1
|z| \leq 1
∣z∣≤1上解析,且
f
(
0
)
=
1.
f(0)=1.
f(0)=1.计算积分
1
2
π
i
∮
∣
z
∣
=
1
{
2
±
(
z
+
1
z
)
}
f
(
z
)
d
z
z
\frac{1}{2\pi\mathrm{i}}\oint_{|z|=1}\left\{2\pm\left(z+\frac{1}{z}\right)\right\}f(z)\frac{\mathrm{d}z}{z}
2πi1∮∣z∣=1{2±(z+z1)}f(z)zdz
再利用极坐标导出下式
2
π
∫
0
2
π
f
(
e
i
θ
)
cos
2
θ
2
d
θ
=
2
+
f
′
(
0
)
\frac2\pi\int_0^{2\pi}f(\mathrm{e}^{\mathrm{i}\theta})\cos^2\frac\theta2\mathrm{d}\theta=2+f^{\prime}(0)
π2∫02πf(eiθ)cos22θdθ=2+f′(0)
2
π
∫
0
2
π
f
(
e
i
θ
)
sin
2
θ
2
d
θ
=
2
−
f
′
(
0
)
\frac2\pi\int_0^{2\pi}f(\mathrm{e}^{\mathrm{i}\theta})\sin^2\frac\theta2\mathrm{d}\theta=2-f^{\prime}(0)
π2∫02πf(eiθ)sin22θdθ=2−f′(0)
解.
由 Cauchy 积分公式及高阶求导公式得
1
2
π
i
∮
∣
z
∣
=
1
{
2
±
(
z
+
1
z
)
}
f
(
z
)
d
z
z
=
1
2
π
i
∮
∣
z
∣
=
1
2
f
(
z
)
z
d
z
±
1
2
π
i
∮
∣
z
∣
=
1
(
z
2
+
1
)
f
(
z
)
z
2
d
z
=
2
f
(
0
)
±
[
(
z
2
+
1
)
f
(
z
)
]
′
∣
z
=
0
=
2
±
f
′
(
0
)
\begin{aligned}&\frac{1}{2\pi\mathrm{i}}\oint_{|z|=1}\left\{2\pm\left(z+\frac{1}{z}\right)\right\}f(z)\frac{\mathrm{d}z}{z}\\&=\frac{1}{2\pi\mathrm{i}}\oint_{|z|=1}\frac{2f(z)}{z}\mathrm{d}z\pm\frac{1}{2\pi\mathrm{i}}\oint_{|z|=1}\frac{(z^{2}+1)f(z)}{z^{2}}\mathrm{d}z\\&=2f(0)\pm\left[(z^2+1)f(z)\right]^{\prime}|_{z=0}\\&=2\pm f^{\prime}(0)\end{aligned}
2πi1∮∣z∣=1{2±(z+z1)}f(z)zdz=2πi1∮∣z∣=1z2f(z)dz±2πi1∮∣z∣=1z2(z2+1)f(z)dz=2f(0)±[(z2+1)f(z)]′∣z=0=2±f′(0)
由复积分计算公式,有
1
2
π
i
∮
∣
z
∣
=
1
{
2
±
(
z
+
1
z
)
}
f
(
z
)
d
z
z
\frac1{2\pi\mathrm{i}}\oint_{|z|=1}\left\{2\pm\left(z+\frac1z\right)\right\}f(z)\frac{\mathrm{d}z}z
2πi1∮∣z∣=1{2±(z+z1)}f(z)zdz
故
=
1
2
π
i
∫
0
2
π
{
2
±
(
e
i
θ
+
e
−
i
θ
)
}
f
(
e
i
θ
)
i
d
θ
=
1
π
∫
0
2
π
(
1
±
cos
θ
)
f
(
e
i
θ
)
d
θ
\begin{aligned}&=\frac{1}{2\pi\mathrm{i}}\int_{0}^{2\pi}\{2\pm(\mathrm{e}^{\mathrm{i}\theta}+\mathrm{e}^{-\mathrm{i}\theta})\}f(\mathrm{e}^{\mathrm{i}\theta})\mathrm{i}\mathrm{d}\theta\\&=\frac{1}{\pi}\int_{0}^{2\pi}(1\pm\cos\theta)f(\mathrm{e}^{\mathrm{i}\theta})\mathrm{d}\theta\end{aligned}
=2πi1∫02π{2±(eiθ+e−iθ)}f(eiθ)idθ=π1∫02π(1±cosθ)f(eiθ)dθ
1
π
∫
0
2
π
(
1
±
cos
θ
)
f
(
e
i
θ
)
d
θ
=
2
±
f
′
(
0
)
\frac1\pi\int_0^{2\pi}(1\pm\cos\theta)f(\mathrm{e}^{\mathrm{i}\theta})\mathrm{d}\theta=2\pm f^{\prime}(0)
π1∫02π(1±cosθ)f(eiθ)dθ=2±f′(0)
又因
1
+
cos
θ
=
2
cos
2
θ
2
,
1
−
cos
θ
=
2
sin
2
θ
2
1+\cos\theta=2\cos^{2}\frac\theta2,1-\cos\theta=2\sin^{2}\frac\theta2
1+cosθ=2cos22θ,1−cosθ=2sin22θ,于是有
2
π
∫
0
2
π
f
(
e
i
θ
)
cos
2
θ
2
d
θ
=
2
+
f
′
(
0
)
\frac2\pi\int_0^{2\pi}f(\mathrm{e}^{\mathrm{i}\theta})\cos^2\frac\theta2\mathrm{d}\theta=2+f^{\prime}(0)
π2∫02πf(eiθ)cos22θdθ=2+f′(0)
2
π
∫
0
2
π
f
(
e
i
θ
)
sin
2
θ
2
d
θ
=
2
−
f
′
(
0
)
\frac2\pi\int_0^{2\pi}f(\mathrm{e}^{\mathrm{i}\theta})\sin^2\frac\theta2\mathrm{d}\theta=2-f^{\prime}(0)
π2∫02πf(eiθ)sin22θdθ=2−f′(0)