傅里叶级数中的积分速算小技巧

算傅里叶级数的时候,我们经常遇到形如
∫ − π π cos ⁡ n x d x \int_{-\pi }^{\pi } \cos nx \mathrm{d}x ππcosnxdx
∫ − π π sin ⁡ n x d x \int_{-\pi }^{\pi } \sin nx \mathrm{d}x ππsinnxdx
的积分。

不难发现,由于 sin ⁡ n x \sin nx sinnx是奇函数,所以 ∫ − π π sin ⁡ n x d x = 0 \color{blue}\int_{-\pi }^{\pi } \sin nx \mathrm{d}x=0 ππsinnxdx=0

∫ − π π cos ⁡ n x d x = 2 ∫ 0 π cos ⁡ n x d x \int_{-\pi }^{\pi } \cos nx \mathrm{d}x=2\int_{0 }^{\pi } \cos nx \mathrm{d}x ππcosnxdx=20πcosnxdx

因此,我们下面研究 ∫ 0 π cos ⁡ n x d x \int_{0 }^{\pi } \cos nx \mathrm{d}x 0πcosnxdx ∫ 0 π sin ⁡ n x d x \int_{0 }^{\pi } \sin nx \mathrm{d}x 0πsinnxdx的值.

1. ∫ 0 π cos ⁡ n x d x \int_{0 }^{\pi } \cos nx \mathrm{d}x 0πcosnxdx的值

使用分部积分法:
∫ 0 π cos ⁡ n x d x = 1 n ∫ 0 π cos ⁡ n x d ( n x ) = 1 n ∫ 0 n π cos ⁡ t d t \int_{0}^\pi {\cos nxdx} = \frac{1}{n}\int_0^\pi {\cos nxd\left( {nx} \right)} = \frac{1}{n}\int_0^{n\pi } {\cos tdt} 0πcosnxdx=n10πcosnxd(nx)=n10costdt
观察 y = c o s x y=cosx y=cosx 图象,一个 π \pi π 区间内面积为0.
所以, ∫ 0 π cos ⁡ n x d x = 0 \color{red}\int_{0 }^{\pi } \cos nx \mathrm{d}x=0 0πcosnxdx=0

2. ∫ 0 π sin ⁡ n x d x \int_{0 }^{\pi } \sin nx \mathrm{d}x 0πsinnxdx的值

同上,也有
∫ 0 π sin ⁡ n x d x = 1 n ∫ 0 n π sin ⁡ t d t \int_0^\pi {\sin nxdx} = \frac{1}{n}\int_0^{n\pi } {\sin tdt} 0πsinnxdx=n10sintdt
观察图象可知

n n n为奇数,
S = 2 ⋅ S π 2 = 2 ⋅ ∫ 0 π 2 sin ⁡ x d x = 2 ⋅ 1 = 2 S = 2 \cdot {S_{\frac{\pi }{2}}} = 2 \cdot \int_0^{\frac{\pi }{2}} {\sin xdx} = 2 \cdot 1 = 2 S=2S2π=202πsinxdx=21=2
n n n为偶数,与奇数相抵消, S = 0 S=0 S=0
我们可以总结成:
∫ 0 π sin ⁡ n x d x = 1 − ( − 1 ) n n \color{red}{\int_0^\pi {\sin nxdx} = \frac{{1 - {{\left( { - 1} \right)}^n}}}{n}} 0πsinnxdx=n1(1)n

含有一次项的积分

考察 ∫ 0 π x cos ⁡ n x d x \int_0^\pi {x\cos nxdx} 0πxcosnxdx
用分部积分法:
∫ 0 π x cos ⁡ n x d x = 1 n ∫ 0 π x d ( sin ⁡ n x ) = x sin ⁡ n x ∣ 0 π − ∫ 0 π sin ⁡ n x d x n = = 0 − [ 1 − ( − 1 ) n ] n = ( − 1 ) n − 1 n \int_0^\pi {x\cos nxdx}= \frac{1}{n}\int_0^\pi {xd\left( {\sin nx} \right)} = \frac{{x\sin nx|_0^\pi - \int_0^\pi {\sin nxdx} }}{n}= = \frac{{0 - \left[ {1 - {{\left( { - 1} \right)}^n}} \right]}}{n} = \frac{{{{\left( { - 1} \right)}^n} - 1}}{n} 0πxcosnxdx=n10πxd(sinnx)=nxsinnx0π0πsinnxdx==n0[1(1)n]=n(1)n1

所以, ∫ 0 π x cos ⁡ n x d x = ( − 1 ) n − 1 n \color{red}\int_0^\pi {x\cos nxdx}= \frac{{{{\left( { - 1} \right)}^n} - 1}}{n} 0πxcosnxdx=n(1)n1

考察 ∫ 0 π x sin ⁡ n x d x \int_0^\pi {x\sin nxdx} 0πxsinnxdx

与上面类似,可以得到:
∫ 0 π x sin ⁡ n x d x = − ( − 1 ) n π n \color{red}\int_0^\pi {x\sin nxdx}=-\frac{(-1)^n \pi}{n} 0πxsinnxdx=n(1)nπ

  • 22
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值