复变函数的幂级数展开

预备知识

幂级数基本性质

  • z n = a n + i b n , z 0 = a + i b z_n=a_n+\mathrm{i} b_n, z_0=a+\mathrm{i}b zn=an+ibn,z0=a+ib, 那么
    lim ⁡ n → ∞ z n = z 0 ⇔ lim ⁡ n → ∞ a n = a , lim ⁡ n → ∞ b n = b \lim\limits_{n \to \infty}z_n=z_0\Leftrightarrow \lim\limits_{n \to \infty}a_n=a, \lim\limits_{n \to \infty}b_n=b nlimzn=z0nliman=a,nlimbn=b
    也就是说,复幂级数收敛充要条件是实部和虚部均收敛。

  • z n = a n + i b n , z 0 = a + i b z_n=a_n+\mathrm{i} b_n,z_0=a+\mathrm{i}b zn=an+ibn,z0=a+ib,那么 lim ⁡ n → ∞ z n \lim\limits_{n \to \infty}z_n nlimzn收敛,且和为 z 0 z_0 z0的等价条件是: a n a_n an b n b_n bn同时收敛于 a a a b b b

  • ∑ n = 1 ∞ z n \sum\limits_{n=1}^{\infty } z_n n=1zn收敛 ⇒ \Rightarrow lim ⁡ n → ∞ z n = 0 \lim\limits_{n \to \infty}z_n=0 nlimzn=0 ,这一定理,我们通常使用他的逆否命题说明级数不收敛。

  • 绝对收敛的级数本身也收敛。

收敛半径的求法

如果幂级数 ∑ n = 0 ∞ c n ( z − a ) n \sum\limits_{n=0}^{\infty} c_n(z-a)^n n=0cn(za)n的系数 c n c_n cn满足

lim ⁡ n → ∞ ∣ c n + 1 c n ∣ = l \lim\limits _{n\to \infty }\left | \frac {c_{n+ 1}}{c_n}\right | = l nlim cncn+1 =l

lim ⁡ n → ∞ ∣ c n ∣ n = l , \lim _{n\to \infty }\sqrt [ n] {| c_n| }= l, nlimncn =l,
则幂级数 ∑ n = 0 ∞ c n ( z − a ) n \sum\limits_{n=0}^\infty c_n(z-a)^n n=0cn(za)n 的收敛半径
R = { 1 l , l ≠ 0 , l ≠ + ∞ ; 0 , l = + ∞ ; + ∞ , l = 0. R=\begin{cases}\dfrac{1}{l},&l\neq0,l\neq+\infty;\\0,&l=+\infty;\\+\infty,&l=0.\end{cases} R= l1,0,+,l=0,l=+;l=+;l=0.

判断敛散性的步骤

  1. 看n趋于无穷时 z n z_n zn是否为0,如果不是 0 0 0,直接判断不收敛

  2. 判断是否绝对收敛,如果绝对收敛,那么原级数一定收敛

  3. 如果不绝对收敛,具体分析,例如莱布尼兹判别法或者是分析实部虚部是否收敛(利用微积分知识)。

常用的泰勒展开式

( 1 ) e z = 1 + z + z 2 2 ! + ⋯ + z n n ! + ⋯ = ∑ n = 0 ∞ z n n ! ( ∣ z ∣ < + ∞ ) ; ( 2 ) 1 1 − z = 1 + z + z 2 + ⋯ + z n + ⋯ = ∑ n = 0 ∞ z n ( ∣ z ∣ < 1 ) ; ( 3 ) 1 1 + z = 1 − z + z 2 − ⋯ + ( − 1 ) n z n + ⋯ = ∑ n = 0 ∞ ( − 1 ) n z n ( ∣ z ∣ < 1 ) ; ( 4 ) sin ⁡ z = z − z 3 3 ! + z 5 5 ! − ⋯ + ( − 1 ) n z 2 n + 1 ( 2 n + 1 ) ! + ⋯ ( ∣ z ∣ < + ∞ ) ; ( 5 ) cos ⁡ z = 1 − z 2 2 ! + z 4 4 ! − ⋯ + ( − 1 ) n z 2 n ( 2 n ) ! + ⋯ ( ∣ z ∣ < + ∞ ) ; ( 6 ) ln ⁡ ( 1 + z ) = z − z 2 2 + z 3 3 − ⋯ + ( − 1 ) n z n + 1 n + 1 + ⋯ \begin{aligned}&(1)e^z=1+z+\frac{z^2}{2!}+\cdots+\frac{z^n}{n!}+\cdots=\sum_{n=0}^\infty\frac{z^n}{n!}\quad(|z|<+\infty);\\&(2)\frac{1}{1-z}=1+z+z^2+\cdots+z^n+\cdots=\sum_{n=0}^\infty z^n\quad(|z|<1);\\&(3)\frac{1}{1+z}=1-z+z^2-\cdots+(-1)^nz^n+\cdots=\sum_{n=0}^\infty(-1)^nz^n\quad(|z|<1);\\&(4)\sin z=z-\frac{z^3}{3!}+\frac{z^5}{5!}-\cdots+(-1)^n\frac{z^{2n+1}}{(2n+1)!}+\cdots\quad(|z|<+\infty);\\&(5)\cos z=1-\frac{z^2}{2!}+\frac{z^4}{4!}-\cdots+(-1)^n\frac{z^{2n}}{(2n)!}+\cdots\quad(|z|<+\infty);\\&(6)\ln(1+z)=z-\frac{z^2}{2}+\frac{z^3}{3}-\cdots+(-1)^n\frac{z^{n+1}}{n+1}+\cdots\end{aligned} (1)ez=1+z+2!z2++n!zn+=n=0n!zn(z<+);(2)1z1=1+z+z2++zn+=n=0zn(z<1);(3)1+z1=1z+z2+(1)nzn+=n=0(1)nzn(z<1);(4)sinz=z3!z3+5!z5+(1)n(2n+1)!z2n+1+(z<+);(5)cosz=12!z2+4!z4+(1)n(2n)!z2n+(z<+);(6)ln(1+z)=z2z2+3z3+(1)nn+1zn+1+

习题

1 判断下列级数敛散性

( 1 ) ∑ n = 1 ∞ i n n ; ( 2 ) ∑ n = 1 ∞ ( 3 + 5 i ) n n ! ; ( 3 ) ∑ n = 1 ∞ ( 1 + 5 i 2 ) n . (1)\sum_{n=1}^\infty\frac{i^n}{n};\quad(2)\sum_{n=1}^\infty\frac{(3+5i)^n}{n!};\quad(3)\sum_{n=1}^\infty\left(\frac{1+5i}{2}\right)^n. (1)n=1nin;(2)n=1n!(3+5i)n;(3)n=1(21+5i)n.

(1) ∑ n = 1 ∞ ∣ i n n ∣ = ∑ n = 1 ∞ 1 n  发散, 所以此复数列是条件收敛的 . \sum_{n=1}^\infty\left|\frac{i^n}{n}\right|=\sum_{n=1}^\infty\frac{1}{n}\text{ 发散, 所以此复数列是条件收敛的}. n=1 nin =n=1n1 发散所以此复数列是条件收敛的.

原级数 = ∑ n = 1 ∞ ( − 1 ) n 2 n + i ∑ n = 1 ∞ ( − 1 ) n − 1 2 n − 1 =\sum\limits_{n=1}^\infty\frac{(-1)^n}{2n}+i\sum\limits_{n=1}^\infty\frac{(-1)^{n-1}}{2n-1} =n=12n(1)n+in=12n1(1)n1,而实部数列 ∑ n = 1 ∞ ( − 1 ) n 2 n \sum\limits_{n=1}^\infty\frac{(-1)^n}{2n} n=12n(1)n和虚部数列 ∑ n = 1 ∞ ( − 1 ) n − 1 2 n − 1 \sum\limits_{n=1}^\infty\frac{(-1)^{n-1}}{2n-1} n=12n1(1)n1都是收敛数列,故该级数收敛。

(2)因为 ∑ n = 1 ∞ ∣ ( 3 + 5 i ) n n ! ∣ = ∑ n = 1 ∞ ∣ 3 + 5 i ∣ n n ! = ∑ n = 1 ∞ ( 34 ) n n ! \sum_{n=1}^\infty\left|\frac{(3+5i)^n}{n!}\right|=\sum_{n=1}^\infty\frac{|3+5i|^n}{n!}=\sum_{n=1}^\infty\frac{(\sqrt{34})^n}{n!} n=1 n!(3+5i)n =n=1n!∣3+5in=n=1n!(34 )n,而
ρ = lim ⁡ n → ∞ 34 n + 1 ( n + 1 ) ! 34 n n ! = lim ⁡ n → ∞ 34 n + 1 = 0 \begin{aligned}\rho=\lim_{n\to\infty}\frac{\frac{\sqrt{34}^{n+1}}{(n+1)!}}{\frac{\sqrt{34}^n}{n!}}=\lim_{n\to\infty}\frac{\sqrt{34}}{n+1}=0\end{aligned} ρ=nlimn!34 n(n+1)!34 n+1=nlimn+134 =0
故该级数绝对收敛,亦即原级数收敛也。

(3)
ρ = lim ⁡ n → ∞ z n = lim ⁡ n → ∞ ∣ 1 + 5 i 2 ∣ n ≠ 0 \rho=\lim\limits_{n\to\infty}z_n=\lim\limits_{n\to\infty}\left|\frac{1+5i}2\right|^n \ne0 ρ=nlimzn=nlim 21+5i n=0
所以发散.

2 判断下列级数收敛半径

( 1 ) ∑ n = 0 ∞ z n n ; ( 2 ) ∑ n = 0 ∞ n z n 2 n ; ( 3 ) ∑ n = 1 ∞ n n z n . (1)\sum\limits_{n=0}^\infty\frac{z^n}{n};\quad(2)\sum\limits_{n=0}^\infty\frac{nz^n}{2^n};\quad(3)\sum\limits_{n=1}^\infty n^nz^n. (1)n=0nzn;(2)n=02nnzn;(3)n=1nnzn.

( 1 ) ∑ n = 0 ∞ z n n ; ( 2 ) ∑ n = 0 ∞ n z n 2 n ; ( 3 ) ∑ n = 1 ∞ n n z n . (1)\sum\limits_{n=0}^\infty\frac{z^n}{n};\quad(2)\sum\limits_{n=0}^\infty\frac{nz^n}{2^n};\quad(3)\sum\limits_{n=1}^\infty n^nz^n. (1)n=0nzn;(2)n=02nnzn;(3)n=1nnzn.

(1)
l = lim ⁡ n → ∞ ∣ c n + 1 c n ∣ = lim ⁡ n → ∞ 1 n + 1 1 n = lim ⁡ n → ∞ n n + 1 = 1 , l=\lim_{n\to\infty}\left|\frac{c_{n+1}}{c_n}\right|=\lim_{n\to\infty}\frac{\frac{1}{n+1}}{\frac{1}{n}}=\lim_{n\to\infty}\frac{n}{n+1}=1, l=nlim cncn+1 =nlimn1n+11=nlimn+1n=1,

所以收敛半径 R = 1 l = 1. R=\frac{1}{l}=1. R=l1=1.

(2)设 c n = n 2 n c_n=\frac{n}{2^n} cn=2nn
l = lim ⁡ n → ∞ ∣ c n + 1 c n ∣ = lim ⁡ n → ∞ n + 1 2 n + 1 n 2 n = 1 2 lim ⁡ n → ∞ n + 1 n = 1 2 , l=\lim_{n\to\infty}\left|\frac{c_{n+1}}{c_{n}}\right|=\lim_{n\to\infty}\frac{\frac{n+1}{2^{n+1}}}{\frac{n}{2^n}}=\frac{1}{2}\lim_{n\to\infty}\frac{n+1}{n}=\frac{1}{2}, l=nlim cncn+1 =nlim2nn2n+1n+1=21nlimnn+1=21,
所以收敛半径 R = 1 l = 2. R=\frac1{l}=2. R=l1=2.

(3)设 c n = n n c_n=n^n cn=nn,则

l = lim ⁡ n → ∞ ∣ n n n ∣ = lim ⁡ n → ∞ n = + ∞ , l=\lim_{n\to\infty}\left|\sqrt[n]{n^n}\right|=\lim_{n\to\infty}n=+\infty, l=nlim nnn =nlimn=+,

所以收敛半径 R = 1 l = 0. R=\frac1l=0. R=l1=0.

3 将下列级数展开成泰勒展式,并给出成立范围

( 1 ) 1 a z + b ( a , b  为复常数,且  b ≠ 0 ) ; ( 2 ) ∫ 0 z e z 2 d z ; ( 3 ) ∫ 0 z sin ⁡ z z d z ; ( 4 ) sin ⁡ 2 z ; ( 5 ) 1 ( 1 − z ) 2 . \begin{aligned}&(1)\frac{1}{az+b}(a,b\text{ 为复常数,且 }b\neq0);&(2)\int_0^ze^{z^2}dz;\\ &(3)\int_0^z\frac{\sin z}{z}dz;&(4)\sin^2z;\\&(5)\frac{1}{(1-z)^2}.\end{aligned} (1)az+b1(a,b 为复常数, b=0);(3)0zzsinzdz;(5)(1z)21.(2)0zez2dz;(4)sin2z;

做题基本方法:用好已知初等函数的泰勒公式,拼凑出形式,可以提取公因式之类的。

(1)我 们 使 用 公 式 1 1 + z = ∑ n = 0 ∞ ( − 1 ) n z n \frac 1{1+ z}= \sum\limits _{n= 0}^\infty ( - 1) ^nz^n 1+z1=n=0(1)nzn ( ∣ z ∣ < 1 ) . ( | z| < 1) . (z<1).

因为 1 a z + b = 1 / b 1 + a b z \frac1{az+b}=\frac{1/b}{1+\frac abz} az+b1=1+baz1/b,

所以我们可以将 a b z \frac abz baz当成一个整体,带入上面公式替换 z z z的位置.

因此得到当 ∣ a b z ∣ < 1 |\frac abz|<1 baz<1时,即 ∣ z ∣ < ∣ b ∣ ∣ a ∣ |z|<\frac{|b|}{|a|} z<ab时,(一定记得先求收敛半径!做题容易忘掉,他和函数的定义域一样很有意义!)
1 a z + b = 1 b ∑ n = 0 ∞ ( − 1 ) n ( a b z ) n = ∑ n = 0 ∞ ( − 1 ) n a n b n + 1 z n . \frac1{az+b}=\frac1b\sum_{n=0}^\infty(-1)^n(\frac abz)^n=\sum_{n=0}^\infty(-1)^n\frac{a^n}{b^{n+1}}z^n. az+b1=b1n=0(1)n(baz)n=n=0(1)nbn+1anzn.
(2)(本题可以先将被积函数幂级数展开,再逐项积分)

我们考虑使用公式 e z = ∑ n = 0 ∞ z n n ! e^z= \sum _n= 0^{\infty }\frac {z^n}{n! } ez=n=0n!zn ( ∣ z ∣ < + ∞ ) ; ( | z| < + \infty ) ; (z<+);
显然,对于任意的复数 z z z,都有 ∣ z 2 ∣ = ∣ z ∣ 2 < + ∞ |z^2|=|z|^2<+\infty z2=z2<+,且 e z 2 e^{z^2} ez2 z z z平面内解析,所以
e z 2 = ∑ n = 0 ∞ ( z 2 ) n n ! = ∑ n = 0 ∞ z 2 n n ! ( ∣ z ∣ < + ∞ ) . \begin{aligned}&\\&e^{z^2}=\sum_{n=0}^\infty\frac{(z^2)^n}{n!}=\sum_{n=0}^\infty\frac{z^{2n}}{n!}\quad(|z|<+\infty).\end{aligned} ez2=n=0n!(z2)n=n=0n!z2n(z<+).
逐项积分:
∫ 0 z e z 2 d z = ∫ 0 z ( ∑ n = 0 ∞ z 2 n n ! ) d z = ∑ n = 0 ∞ ( ∫ 0 z z 2 n n ! d z ) = ∑ n = 0 ∞ z 2 n + 1 n ! ( 2 n + 1 ) ( ∣ z ∣ < + ∞ ) . \begin{aligned}\int_0^ze^{z^2}dz&=\int_0^z\left(\sum_{n=0}^\infty\frac{z^{2n}}{n!}\right)dz\\&=\sum_{n=0}^\infty\left(\int_0^z\frac{z^{2n}}{n!}dz\right)=\sum_{n=0}^\infty\frac{z^{2n+1}}{n!(2n+1)}&(|z|<+\infty).\end{aligned} 0zez2dz=0z(n=0n!z2n)dz=n=0(0zn!z2ndz)=n=0n!(2n+1)z2n+1(z<+).
(3)
∫ 0 z sin ⁡ z z d z = ∫ 0 z ( ∑ n = 0 ∞ ( − 1 ) n z 2 n ( 2 n + 1 ) ! ) d z = ∑ n = 0 ∞ ( ∫ 0 z ( − 1 ) n z 2 n ( 2 n + 1 ) ! d z ) = ∑ n = 0 ∞ ( − 1 ) n z 2 n + 1 ( 2 n + 1 ) ( 2 n + 1 ) ! ( ∣ z ∣ < + ∞ ) . \begin{aligned}&\begin{aligned}\int_0^z\frac{\sin z}{z}dz=\int_0^z\left(\sum_{n=0}^\infty(-1)^n\frac{z^{2n}}{(2n+1)!}\right)dz\end{aligned}\\&\begin{aligned}=\sum_{n=0}^\infty\left(\int_0^z(-1)^n\frac{z^{2n}}{(2n+1)!}dz\right)=\sum_{n=0}^\infty(-1)^n\frac{z^{2n+1}}{(2n+1)(2n+1)!}\end{aligned}\\&(|z|<+\infty).\end{aligned} 0zzsinzdz=0z(n=0(1)n(2n+1)!z2n)dz=n=0(0z(1)n(2n+1)!z2ndz)=n=0(1)n(2n+1)(2n+1)!z2n+1(z<+).
(4)使用二倍角公式

这样 , sin ⁡ 2 z = 1 − cos ⁡ 2 z 2 = 1 2 − 1 2 cos ⁡ 2 z \sin^2z=\frac{1-\cos2z}{2}=\frac{1}{2}-\frac{1}{2}\cos2z sin2z=21cos2z=2121cos2z

cos ⁡ z = ∑ ∞ ( − 1 ) n z 2 n ( 2 n ) ! ( ∣ z ∣ < + ∞ ) , \cos z=\sum^\infty(-1)^n\frac{z^{2n}}{(2n)!}\quad(|z|<+\infty), cosz=(1)n(2n)!z2n(z<+),
sin ⁡ 2 z = 1 2 − 1 2 ⌊ ∑ n = 0 ∞ ( − 1 ) n ( 2 z ) 2 n ( 2 n ) ! ⌋ = ∑ n = 1 ∞ ( − 1 ) n + 1 ⋅ 2 2 n − 1 ( 2 n ) ! z 2 n ( ∣ z ∣ < + ∞ ) . \begin{gathered}\sin^2z=\frac{1}{2}-\frac{1}{2}\left\lfloor\sum_{n=0}^\infty(-1)^n\frac{(2z)^{2n}}{(2n)!}\right\rfloor\\\begin{aligned}&=\sum_{n=1}^\infty\frac{(-1)^{n+1}\cdot2^{2n-1}}{(2n)!}z^{2n}&(|z|<+\infty).\end{aligned}\end{gathered} sin2z=2121n=0(1)n(2n)!(2z)2n=n=1(2n)!(1)n+122n1z2n(z<+).
(5)
因为  1 1 − z = ∑ n = 0 ∞ z n ( ∣ z ∣ < 1 )  所以 1 ( 1 − z ) 2 = ( 1 1 − z ) ′ = ( ∑ n = 0 ∞ z n ) ′ = ∑ n = 0 ∞ n z n − 1 ( ∣ z ∣ < 1 ) . \begin{gathered}\begin{aligned}\text{因为 }\frac{1}{1-z}&=\sum_{n=0}^{\infty}z^{n}&(|z|<1)\text{ 所以}\end{aligned}\\\begin{aligned}\frac{1}{(1-z)^2}&=\left(\frac{1}{1-z}\right)^{\prime}=\left(\sum_{n=0}^{\infty}z^n\right)^{\prime}\end{aligned}\\=\sum_{n=0}^\infty nz^{n-1}(|z|<1).\end{gathered} 因为 1z1=n=0zn(z<1) 所以(1z)21=(1z1)=(n=0zn)=n=0nzn1(z<1).

3

写出  e z ln ⁡ ( 1 + z )  的幂级数展式至含  z 5  项为止, 其中  ln ⁡ ( 1 + z ) ∣ z = 0 = 0 \text{写出 }e^z\ln(1+z)\text{ 的幂级数展式至含 }z^5\text{ 项为止, 其中 }\ln(1+z)|_{z=0}=0 写出 ezln(1+z) 的幂级数展式至含 z5 项为止其中 ln(1+z)z=0=0
已知条件  ln ⁡ ( 1 + z ) ∣ z = 0 = 0  表明  ln ⁡ ( 1 + z )  是主值支. 而 ln ⁡ ( 1 + z ) = z − z 2 2 + z 3 3 + − z 4 4 + z 5 5 − ⋯ + ( − 1 ) n z n + 1 n + 1 + ⋯ ( ∣ z ∣ < 1 ‾ ) e z = ∑ n = 0 ∞ z n n ! = 1 + z + z 9 2 ! + z 3 3 ! + z 4 4 ! + ⋯ + z n n ! ( ∣ z ∣ < + ∞ ) . 两者的公共收敛域为  ∣ z ∣ < 1.  此时 ,  由级数乘积的柯西法则 ,  有 \begin{aligned}&\text{已知条件 }\ln(1+z)|_{z=0}=0\text{ 表明 }\ln(1+z)\text{ 是主值支. 而}\\&\ln(1+z)=z-\frac{z^2}{2}+\frac{z^3}{3^+}-\frac{z^4}{4}+\frac{z^5}{5}-\cdots+(-1)^n\frac{z^{n+1}}{n+1}+\cdots\underline{(|z|<1})\\&e^z=\sum_{n=0}^\infty\frac{z^n}{n!}=1+z+\frac{z^9}{2!}+\frac{z^3}{3!}+\frac{z^4}{4!}+\cdots+\frac{z^n}{n!}\quad(|z|<+\infty).\\&\text{两者的公共收敛域为 }|z|<1.\text{ 此时},\text{ 由级数乘积的柯西法则},\text{ 有}\end{aligned} 已知条件 ln(1+z)z=0=0 表明 ln(1+z) 是主值支ln(1+z)=z2z2+3+z34z4+5z5+(1)nn+1zn+1+(z<1)ez=n=0n!zn=1+z+2!z9+3!z3+4!z4++n!zn(z<+).两者的公共收敛域为 z<1. 此时, 由级数乘积的柯西法则, 
e z ln ⁡ ( 1 + z ) = z + z 2 2 + z 3 3 + 3 40 z 5 + ⋯ ( ∣ z ∣ < 1 ) . e^z\ln(1+z)=z+\frac{z^2}{2}+\frac{z^3}{3}+\frac{3}{40}z^5+\cdots\quad(|z|<1). ezln(1+z)=z+2z2+3z3+403z5+(z<1).

4

将下列函数按 z − 1 z-1 z1 的幂展开,并指明其收敛范围.
( 1 ) sin ⁡ z ; ( 2 )   z − 1 z + 1 ; (1)\sin z;\quad(2)\:\frac{z-1}{z+1}; (1)sinz;(2)z+1z1;

(1)本题我们尽量将已知函数向 sin ⁡ ( z − 1 ) , cos ⁡ ( z − 1 ) \sin(z-1),\cos(z-1) sin(z1),cos(z1)靠拢,以期利用后两者的幂级数展式.

因为 sin ⁡ z = sin ⁡ [ ( z − 1 ) + 1 ] = sin ⁡ ( z − 1 ) cos ⁡ 1 + cos ⁡ ( z − 1 ) sin ⁡ 1 \sin z=\sin[(z-1)+1]=\sin(z-1)\cos1+\cos(z-1)\sin1 sinz=sin[(z1)+1]=sin(z1)cos1+cos(z1)sin1,

sin ⁡ ( z − 1 ) = ∑ n = 0 ∞ ( − 1 ) n ( z − 1 ) 2 n + 1 ( 2 n + 1 ) ! ( ∣ z − 1 ∣ < + ∞ ) \sin(z-1)=\sum_{n=0}^\infty(-1)^n\frac{(z-1)^{2n+1}}{(2n+1)!} \quad (|z-1|<+\infty) sin(z1)=n=0(1)n(2n+1)!(z1)2n+1(z1∣<+)

sin ⁡ z = cos ⁡ 1 [ ( z − 1 ) − ( z − 1 ) 3 3 ! + ( z − 1 ) 5 5 ! − ⋯   ] + sin ⁡ 1 [ 1 − ( z − 1 ) 2 2 ! + ( z − 1 ) 4 4 ! − ⋯   ] = ∑ k − 0 ∞ sin ⁡ ( k π 2 + 1 ⊺ ) k ! ( z − 1 ) k , ( ∣ z − 1 ∣ < + ∞ ) . \begin{aligned}&\begin{aligned}\sin z=\cos1\left[(z-1)-\frac{(z-1)^3}{3!}+\frac{(z-1)^5}{5!}-\cdots\right]\end{aligned}\\&\begin{aligned}+\sin1\left[1-\frac{(z-1)^2}{2!}+\frac{(z-1)^4}{4!}-\cdots\right]\end{aligned}\\&\begin{aligned}&=\sum_{k-0}^{\infty}\frac{\sin(\frac{k\pi}{2}+1^{\intercal})}{k!}(z-1)^k,\end{aligned}&\begin{aligned}(|z-1|<+\infty).\end{aligned}\end{aligned} sinz=cos1[(z1)3!(z1)3+5!(z1)5]+sin1[12!(z1)2+4!(z1)4]=k0k!sin(2+1)(z1)k,(z1∣<+).

(2)本题我们尽量将已知函数向 1 1 + z \frac1{1+z} 1+z1 靠拢,以期利用后者的幂级数展式.

z − 1 z + 1 = z − 1 + 2 − 2 z − 1 + ⊺ 2 = 1 − 2 2 + z − 1 = 1 − 1 1 + z − 1 2 . \frac{z-1}{z+1}=\frac{z-1+2-2}{z-1+^\intercal2}=1-\frac2{2+z-1}=1-\frac1{1+\frac{z-1}2}. z+1z1=z1+2z1+22=12+z12=11+2z11.
这样,当  ∣ z − 1 2 ∣ < 1  时, 即  ∣ z − 1 ∣ < 2  时, \text{这样,当 }\left|\frac{z-1}{2}\right|<1\text{ 时, 即 }|z-1|<2\text{ 时,} 这样,  2z1 <1  z1∣<2 ,
z − 1 z + 1 = 1 − ∑ n = 0 ∞ ( − 1 ) n ( z − 1 2 ) n = 1 − [ 1 + ∑ n = 1 ∞ ( − 1 2 ) n ( z − 1 ) n ] \begin{gathered}\begin{aligned}\frac{z-1}{z+1}&=1-\sum_{n=0}^\infty(-1)^n\left(\frac{z-1}{2}\right)^n\end{aligned}\\\begin{aligned}=1-\left[1+\sum_{n=1}^\infty(-\frac{1}{2})^n(z-1)^n\right]\end{aligned}\end{gathered} z+1z1=1n=0(1)n(2z1)n=1[1+n=1(21)n(z1)n]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值