预备知识
幂级数基本性质
-
记 z n = a n + i b n , z 0 = a + i b z_n=a_n+\mathrm{i} b_n, z_0=a+\mathrm{i}b zn=an+ibn,z0=a+ib, 那么
lim n → ∞ z n = z 0 ⇔ lim n → ∞ a n = a , lim n → ∞ b n = b \lim\limits_{n \to \infty}z_n=z_0\Leftrightarrow \lim\limits_{n \to \infty}a_n=a, \lim\limits_{n \to \infty}b_n=b n→∞limzn=z0⇔n→∞liman=a,n→∞limbn=b
也就是说,复幂级数收敛充要条件是实部和虚部均收敛。 -
记 z n = a n + i b n , z 0 = a + i b z_n=a_n+\mathrm{i} b_n,z_0=a+\mathrm{i}b zn=an+ibn,z0=a+ib,那么 lim n → ∞ z n \lim\limits_{n \to \infty}z_n n→∞limzn收敛,且和为 z 0 z_0 z0的等价条件是: a n a_n an与 b n b_n bn同时收敛于 a a a与 b b b。
-
∑ n = 1 ∞ z n \sum\limits_{n=1}^{\infty } z_n n=1∑∞zn收敛 ⇒ \Rightarrow ⇒ lim n → ∞ z n = 0 \lim\limits_{n \to \infty}z_n=0 n→∞limzn=0 ,这一定理,我们通常使用他的逆否命题说明级数不收敛。
-
绝对收敛的级数本身也收敛。
收敛半径的求法
如果幂级数 ∑ n = 0 ∞ c n ( z − a ) n \sum\limits_{n=0}^{\infty} c_n(z-a)^n n=0∑∞cn(z−a)n的系数 c n c_n cn满足
lim
n
→
∞
∣
c
n
+
1
c
n
∣
=
l
\lim\limits _{n\to \infty }\left | \frac {c_{n+ 1}}{c_n}\right | = l
n→∞lim
cncn+1
=l
或
lim
n
→
∞
∣
c
n
∣
n
=
l
,
\lim _{n\to \infty }\sqrt [ n] {| c_n| }= l,
n→∞limn∣cn∣=l,
则幂级数
∑
n
=
0
∞
c
n
(
z
−
a
)
n
\sum\limits_{n=0}^\infty c_n(z-a)^n
n=0∑∞cn(z−a)n 的收敛半径
R
=
{
1
l
,
l
≠
0
,
l
≠
+
∞
;
0
,
l
=
+
∞
;
+
∞
,
l
=
0.
R=\begin{cases}\dfrac{1}{l},&l\neq0,l\neq+\infty;\\0,&l=+\infty;\\+\infty,&l=0.\end{cases}
R=⎩
⎨
⎧l1,0,+∞,l=0,l=+∞;l=+∞;l=0.
判断敛散性的步骤
-
看n趋于无穷时 z n z_n zn是否为0,如果不是 0 0 0,直接判断不收敛
-
判断是否绝对收敛,如果绝对收敛,那么原级数一定收敛
-
如果不绝对收敛,具体分析,例如莱布尼兹判别法或者是分析实部虚部是否收敛(利用微积分知识)。
常用的泰勒展开式
( 1 ) e z = 1 + z + z 2 2 ! + ⋯ + z n n ! + ⋯ = ∑ n = 0 ∞ z n n ! ( ∣ z ∣ < + ∞ ) ; ( 2 ) 1 1 − z = 1 + z + z 2 + ⋯ + z n + ⋯ = ∑ n = 0 ∞ z n ( ∣ z ∣ < 1 ) ; ( 3 ) 1 1 + z = 1 − z + z 2 − ⋯ + ( − 1 ) n z n + ⋯ = ∑ n = 0 ∞ ( − 1 ) n z n ( ∣ z ∣ < 1 ) ; ( 4 ) sin z = z − z 3 3 ! + z 5 5 ! − ⋯ + ( − 1 ) n z 2 n + 1 ( 2 n + 1 ) ! + ⋯ ( ∣ z ∣ < + ∞ ) ; ( 5 ) cos z = 1 − z 2 2 ! + z 4 4 ! − ⋯ + ( − 1 ) n z 2 n ( 2 n ) ! + ⋯ ( ∣ z ∣ < + ∞ ) ; ( 6 ) ln ( 1 + z ) = z − z 2 2 + z 3 3 − ⋯ + ( − 1 ) n z n + 1 n + 1 + ⋯ \begin{aligned}&(1)e^z=1+z+\frac{z^2}{2!}+\cdots+\frac{z^n}{n!}+\cdots=\sum_{n=0}^\infty\frac{z^n}{n!}\quad(|z|<+\infty);\\&(2)\frac{1}{1-z}=1+z+z^2+\cdots+z^n+\cdots=\sum_{n=0}^\infty z^n\quad(|z|<1);\\&(3)\frac{1}{1+z}=1-z+z^2-\cdots+(-1)^nz^n+\cdots=\sum_{n=0}^\infty(-1)^nz^n\quad(|z|<1);\\&(4)\sin z=z-\frac{z^3}{3!}+\frac{z^5}{5!}-\cdots+(-1)^n\frac{z^{2n+1}}{(2n+1)!}+\cdots\quad(|z|<+\infty);\\&(5)\cos z=1-\frac{z^2}{2!}+\frac{z^4}{4!}-\cdots+(-1)^n\frac{z^{2n}}{(2n)!}+\cdots\quad(|z|<+\infty);\\&(6)\ln(1+z)=z-\frac{z^2}{2}+\frac{z^3}{3}-\cdots+(-1)^n\frac{z^{n+1}}{n+1}+\cdots\end{aligned} (1)ez=1+z+2!z2+⋯+n!zn+⋯=n=0∑∞n!zn(∣z∣<+∞);(2)1−z1=1+z+z2+⋯+zn+⋯=n=0∑∞zn(∣z∣<1);(3)1+z1=1−z+z2−⋯+(−1)nzn+⋯=n=0∑∞(−1)nzn(∣z∣<1);(4)sinz=z−3!z3+5!z5−⋯+(−1)n(2n+1)!z2n+1+⋯(∣z∣<+∞);(5)cosz=1−2!z2+4!z4−⋯+(−1)n(2n)!z2n+⋯(∣z∣<+∞);(6)ln(1+z)=z−2z2+3z3−⋯+(−1)nn+1zn+1+⋯
习题
1 判断下列级数敛散性
( 1 ) ∑ n = 1 ∞ i n n ; ( 2 ) ∑ n = 1 ∞ ( 3 + 5 i ) n n ! ; ( 3 ) ∑ n = 1 ∞ ( 1 + 5 i 2 ) n . (1)\sum_{n=1}^\infty\frac{i^n}{n};\quad(2)\sum_{n=1}^\infty\frac{(3+5i)^n}{n!};\quad(3)\sum_{n=1}^\infty\left(\frac{1+5i}{2}\right)^n. (1)∑n=1∞nin;(2)∑n=1∞n!(3+5i)n;(3)∑n=1∞(21+5i)n.
(1) ∑ n = 1 ∞ ∣ i n n ∣ = ∑ n = 1 ∞ 1 n 发散, 所以此复数列是条件收敛的 . \sum_{n=1}^\infty\left|\frac{i^n}{n}\right|=\sum_{n=1}^\infty\frac{1}{n}\text{ 发散, 所以此复数列是条件收敛的}. ∑n=1∞ nin =∑n=1∞n1 发散, 所以此复数列是条件收敛的.
原级数 = ∑ n = 1 ∞ ( − 1 ) n 2 n + i ∑ n = 1 ∞ ( − 1 ) n − 1 2 n − 1 =\sum\limits_{n=1}^\infty\frac{(-1)^n}{2n}+i\sum\limits_{n=1}^\infty\frac{(-1)^{n-1}}{2n-1} =n=1∑∞2n(−1)n+in=1∑∞2n−1(−1)n−1,而实部数列 ∑ n = 1 ∞ ( − 1 ) n 2 n \sum\limits_{n=1}^\infty\frac{(-1)^n}{2n} n=1∑∞2n(−1)n和虚部数列 ∑ n = 1 ∞ ( − 1 ) n − 1 2 n − 1 \sum\limits_{n=1}^\infty\frac{(-1)^{n-1}}{2n-1} n=1∑∞2n−1(−1)n−1都是收敛数列,故该级数收敛。
(2)因为
∑
n
=
1
∞
∣
(
3
+
5
i
)
n
n
!
∣
=
∑
n
=
1
∞
∣
3
+
5
i
∣
n
n
!
=
∑
n
=
1
∞
(
34
)
n
n
!
\sum_{n=1}^\infty\left|\frac{(3+5i)^n}{n!}\right|=\sum_{n=1}^\infty\frac{|3+5i|^n}{n!}=\sum_{n=1}^\infty\frac{(\sqrt{34})^n}{n!}
∑n=1∞
n!(3+5i)n
=∑n=1∞n!∣3+5i∣n=∑n=1∞n!(34)n,而
ρ
=
lim
n
→
∞
34
n
+
1
(
n
+
1
)
!
34
n
n
!
=
lim
n
→
∞
34
n
+
1
=
0
\begin{aligned}\rho=\lim_{n\to\infty}\frac{\frac{\sqrt{34}^{n+1}}{(n+1)!}}{\frac{\sqrt{34}^n}{n!}}=\lim_{n\to\infty}\frac{\sqrt{34}}{n+1}=0\end{aligned}
ρ=n→∞limn!34n(n+1)!34n+1=n→∞limn+134=0
故该级数绝对收敛,亦即原级数收敛也。
(3)
ρ
=
lim
n
→
∞
z
n
=
lim
n
→
∞
∣
1
+
5
i
2
∣
n
≠
0
\rho=\lim\limits_{n\to\infty}z_n=\lim\limits_{n\to\infty}\left|\frac{1+5i}2\right|^n \ne0
ρ=n→∞limzn=n→∞lim
21+5i
n=0
所以发散.
2 判断下列级数收敛半径
( 1 ) ∑ n = 0 ∞ z n n ; ( 2 ) ∑ n = 0 ∞ n z n 2 n ; ( 3 ) ∑ n = 1 ∞ n n z n . (1)\sum\limits_{n=0}^\infty\frac{z^n}{n};\quad(2)\sum\limits_{n=0}^\infty\frac{nz^n}{2^n};\quad(3)\sum\limits_{n=1}^\infty n^nz^n. (1)n=0∑∞nzn;(2)n=0∑∞2nnzn;(3)n=1∑∞nnzn.
( 1 ) ∑ n = 0 ∞ z n n ; ( 2 ) ∑ n = 0 ∞ n z n 2 n ; ( 3 ) ∑ n = 1 ∞ n n z n . (1)\sum\limits_{n=0}^\infty\frac{z^n}{n};\quad(2)\sum\limits_{n=0}^\infty\frac{nz^n}{2^n};\quad(3)\sum\limits_{n=1}^\infty n^nz^n. (1)n=0∑∞nzn;(2)n=0∑∞2nnzn;(3)n=1∑∞nnzn.
(1)
l
=
lim
n
→
∞
∣
c
n
+
1
c
n
∣
=
lim
n
→
∞
1
n
+
1
1
n
=
lim
n
→
∞
n
n
+
1
=
1
,
l=\lim_{n\to\infty}\left|\frac{c_{n+1}}{c_n}\right|=\lim_{n\to\infty}\frac{\frac{1}{n+1}}{\frac{1}{n}}=\lim_{n\to\infty}\frac{n}{n+1}=1,
l=n→∞lim
cncn+1
=n→∞limn1n+11=n→∞limn+1n=1,
所以收敛半径 R = 1 l = 1. R=\frac{1}{l}=1. R=l1=1.
(2)设
c
n
=
n
2
n
c_n=\frac{n}{2^n}
cn=2nn 则
l
=
lim
n
→
∞
∣
c
n
+
1
c
n
∣
=
lim
n
→
∞
n
+
1
2
n
+
1
n
2
n
=
1
2
lim
n
→
∞
n
+
1
n
=
1
2
,
l=\lim_{n\to\infty}\left|\frac{c_{n+1}}{c_{n}}\right|=\lim_{n\to\infty}\frac{\frac{n+1}{2^{n+1}}}{\frac{n}{2^n}}=\frac{1}{2}\lim_{n\to\infty}\frac{n+1}{n}=\frac{1}{2},
l=n→∞lim
cncn+1
=n→∞lim2nn2n+1n+1=21n→∞limnn+1=21,
所以收敛半径
R
=
1
l
=
2.
R=\frac1{l}=2.
R=l1=2.
(3)设 c n = n n c_n=n^n cn=nn,则
l = lim n → ∞ ∣ n n n ∣ = lim n → ∞ n = + ∞ , l=\lim_{n\to\infty}\left|\sqrt[n]{n^n}\right|=\lim_{n\to\infty}n=+\infty, l=n→∞lim nnn =n→∞limn=+∞,
所以收敛半径 R = 1 l = 0. R=\frac1l=0. R=l1=0.
3 将下列级数展开成泰勒展式,并给出成立范围
( 1 ) 1 a z + b ( a , b 为复常数,且 b ≠ 0 ) ; ( 2 ) ∫ 0 z e z 2 d z ; ( 3 ) ∫ 0 z sin z z d z ; ( 4 ) sin 2 z ; ( 5 ) 1 ( 1 − z ) 2 . \begin{aligned}&(1)\frac{1}{az+b}(a,b\text{ 为复常数,且 }b\neq0);&(2)\int_0^ze^{z^2}dz;\\ &(3)\int_0^z\frac{\sin z}{z}dz;&(4)\sin^2z;\\&(5)\frac{1}{(1-z)^2}.\end{aligned} (1)az+b1(a,b 为复常数,且 b=0);(3)∫0zzsinzdz;(5)(1−z)21.(2)∫0zez2dz;(4)sin2z;
做题基本方法:用好已知初等函数的泰勒公式,拼凑出形式,可以提取公因式之类的。
(1)我 们 使 用 公 式 1 1 + z = ∑ n = 0 ∞ ( − 1 ) n z n \frac 1{1+ z}= \sum\limits _{n= 0}^\infty ( - 1) ^nz^n 1+z1=n=0∑∞(−1)nzn ( ∣ z ∣ < 1 ) . ( | z| < 1) . (∣z∣<1).
因为 1 a z + b = 1 / b 1 + a b z \frac1{az+b}=\frac{1/b}{1+\frac abz} az+b1=1+baz1/b,
所以我们可以将 a b z \frac abz baz当成一个整体,带入上面公式替换 z z z的位置.
因此得到当
∣
a
b
z
∣
<
1
|\frac abz|<1
∣baz∣<1时,即
∣
z
∣
<
∣
b
∣
∣
a
∣
|z|<\frac{|b|}{|a|}
∣z∣<∣a∣∣b∣时,(一定记得先求收敛半径!做题容易忘掉,他和函数的定义域一样很有意义!)
1
a
z
+
b
=
1
b
∑
n
=
0
∞
(
−
1
)
n
(
a
b
z
)
n
=
∑
n
=
0
∞
(
−
1
)
n
a
n
b
n
+
1
z
n
.
\frac1{az+b}=\frac1b\sum_{n=0}^\infty(-1)^n(\frac abz)^n=\sum_{n=0}^\infty(-1)^n\frac{a^n}{b^{n+1}}z^n.
az+b1=b1n=0∑∞(−1)n(baz)n=n=0∑∞(−1)nbn+1anzn.
(2)(本题可以先将被积函数幂级数展开,再逐项积分)
我们考虑使用公式
e
z
=
∑
n
=
0
∞
z
n
n
!
e^z= \sum _n= 0^{\infty }\frac {z^n}{n! }
ez=∑n=0∞n!zn
(
∣
z
∣
<
+
∞
)
;
( | z| < + \infty ) ;
(∣z∣<+∞);
显然,对于任意的复数
z
z
z,都有
∣
z
2
∣
=
∣
z
∣
2
<
+
∞
|z^2|=|z|^2<+\infty
∣z2∣=∣z∣2<+∞,且
e
z
2
e^{z^2}
ez2在
z
z
z平面内解析,所以
e
z
2
=
∑
n
=
0
∞
(
z
2
)
n
n
!
=
∑
n
=
0
∞
z
2
n
n
!
(
∣
z
∣
<
+
∞
)
.
\begin{aligned}&\\&e^{z^2}=\sum_{n=0}^\infty\frac{(z^2)^n}{n!}=\sum_{n=0}^\infty\frac{z^{2n}}{n!}\quad(|z|<+\infty).\end{aligned}
ez2=n=0∑∞n!(z2)n=n=0∑∞n!z2n(∣z∣<+∞).
逐项积分:
∫
0
z
e
z
2
d
z
=
∫
0
z
(
∑
n
=
0
∞
z
2
n
n
!
)
d
z
=
∑
n
=
0
∞
(
∫
0
z
z
2
n
n
!
d
z
)
=
∑
n
=
0
∞
z
2
n
+
1
n
!
(
2
n
+
1
)
(
∣
z
∣
<
+
∞
)
.
\begin{aligned}\int_0^ze^{z^2}dz&=\int_0^z\left(\sum_{n=0}^\infty\frac{z^{2n}}{n!}\right)dz\\&=\sum_{n=0}^\infty\left(\int_0^z\frac{z^{2n}}{n!}dz\right)=\sum_{n=0}^\infty\frac{z^{2n+1}}{n!(2n+1)}&(|z|<+\infty).\end{aligned}
∫0zez2dz=∫0z(n=0∑∞n!z2n)dz=n=0∑∞(∫0zn!z2ndz)=n=0∑∞n!(2n+1)z2n+1(∣z∣<+∞).
(3)
∫
0
z
sin
z
z
d
z
=
∫
0
z
(
∑
n
=
0
∞
(
−
1
)
n
z
2
n
(
2
n
+
1
)
!
)
d
z
=
∑
n
=
0
∞
(
∫
0
z
(
−
1
)
n
z
2
n
(
2
n
+
1
)
!
d
z
)
=
∑
n
=
0
∞
(
−
1
)
n
z
2
n
+
1
(
2
n
+
1
)
(
2
n
+
1
)
!
(
∣
z
∣
<
+
∞
)
.
\begin{aligned}&\begin{aligned}\int_0^z\frac{\sin z}{z}dz=\int_0^z\left(\sum_{n=0}^\infty(-1)^n\frac{z^{2n}}{(2n+1)!}\right)dz\end{aligned}\\&\begin{aligned}=\sum_{n=0}^\infty\left(\int_0^z(-1)^n\frac{z^{2n}}{(2n+1)!}dz\right)=\sum_{n=0}^\infty(-1)^n\frac{z^{2n+1}}{(2n+1)(2n+1)!}\end{aligned}\\&(|z|<+\infty).\end{aligned}
∫0zzsinzdz=∫0z(n=0∑∞(−1)n(2n+1)!z2n)dz=n=0∑∞(∫0z(−1)n(2n+1)!z2ndz)=n=0∑∞(−1)n(2n+1)(2n+1)!z2n+1(∣z∣<+∞).
(4)使用二倍角公式
这样 , sin 2 z = 1 − cos 2 z 2 = 1 2 − 1 2 cos 2 z \sin^2z=\frac{1-\cos2z}{2}=\frac{1}{2}-\frac{1}{2}\cos2z sin2z=21−cos2z=21−21cos2z
而
cos
z
=
∑
∞
(
−
1
)
n
z
2
n
(
2
n
)
!
(
∣
z
∣
<
+
∞
)
,
\cos z=\sum^\infty(-1)^n\frac{z^{2n}}{(2n)!}\quad(|z|<+\infty),
cosz=∑∞(−1)n(2n)!z2n(∣z∣<+∞),
sin
2
z
=
1
2
−
1
2
⌊
∑
n
=
0
∞
(
−
1
)
n
(
2
z
)
2
n
(
2
n
)
!
⌋
=
∑
n
=
1
∞
(
−
1
)
n
+
1
⋅
2
2
n
−
1
(
2
n
)
!
z
2
n
(
∣
z
∣
<
+
∞
)
.
\begin{gathered}\sin^2z=\frac{1}{2}-\frac{1}{2}\left\lfloor\sum_{n=0}^\infty(-1)^n\frac{(2z)^{2n}}{(2n)!}\right\rfloor\\\begin{aligned}&=\sum_{n=1}^\infty\frac{(-1)^{n+1}\cdot2^{2n-1}}{(2n)!}z^{2n}&(|z|<+\infty).\end{aligned}\end{gathered}
sin2z=21−21⌊n=0∑∞(−1)n(2n)!(2z)2n⌋=n=1∑∞(2n)!(−1)n+1⋅22n−1z2n(∣z∣<+∞).
(5)
因为
1
1
−
z
=
∑
n
=
0
∞
z
n
(
∣
z
∣
<
1
)
所以
1
(
1
−
z
)
2
=
(
1
1
−
z
)
′
=
(
∑
n
=
0
∞
z
n
)
′
=
∑
n
=
0
∞
n
z
n
−
1
(
∣
z
∣
<
1
)
.
\begin{gathered}\begin{aligned}\text{因为 }\frac{1}{1-z}&=\sum_{n=0}^{\infty}z^{n}&(|z|<1)\text{ 所以}\end{aligned}\\\begin{aligned}\frac{1}{(1-z)^2}&=\left(\frac{1}{1-z}\right)^{\prime}=\left(\sum_{n=0}^{\infty}z^n\right)^{\prime}\end{aligned}\\=\sum_{n=0}^\infty nz^{n-1}(|z|<1).\end{gathered}
因为 1−z1=n=0∑∞zn(∣z∣<1) 所以(1−z)21=(1−z1)′=(n=0∑∞zn)′=n=0∑∞nzn−1(∣z∣<1).
3
写出
e
z
ln
(
1
+
z
)
的幂级数展式至含
z
5
项为止, 其中
ln
(
1
+
z
)
∣
z
=
0
=
0
\text{写出 }e^z\ln(1+z)\text{ 的幂级数展式至含 }z^5\text{ 项为止, 其中 }\ln(1+z)|_{z=0}=0
写出 ezln(1+z) 的幂级数展式至含 z5 项为止, 其中 ln(1+z)∣z=0=0
已知条件
ln
(
1
+
z
)
∣
z
=
0
=
0
表明
ln
(
1
+
z
)
是主值支. 而
ln
(
1
+
z
)
=
z
−
z
2
2
+
z
3
3
+
−
z
4
4
+
z
5
5
−
⋯
+
(
−
1
)
n
z
n
+
1
n
+
1
+
⋯
(
∣
z
∣
<
1
‾
)
e
z
=
∑
n
=
0
∞
z
n
n
!
=
1
+
z
+
z
9
2
!
+
z
3
3
!
+
z
4
4
!
+
⋯
+
z
n
n
!
(
∣
z
∣
<
+
∞
)
.
两者的公共收敛域为
∣
z
∣
<
1.
此时
,
由级数乘积的柯西法则
,
有
\begin{aligned}&\text{已知条件 }\ln(1+z)|_{z=0}=0\text{ 表明 }\ln(1+z)\text{ 是主值支. 而}\\&\ln(1+z)=z-\frac{z^2}{2}+\frac{z^3}{3^+}-\frac{z^4}{4}+\frac{z^5}{5}-\cdots+(-1)^n\frac{z^{n+1}}{n+1}+\cdots\underline{(|z|<1})\\&e^z=\sum_{n=0}^\infty\frac{z^n}{n!}=1+z+\frac{z^9}{2!}+\frac{z^3}{3!}+\frac{z^4}{4!}+\cdots+\frac{z^n}{n!}\quad(|z|<+\infty).\\&\text{两者的公共收敛域为 }|z|<1.\text{ 此时},\text{ 由级数乘积的柯西法则},\text{ 有}\end{aligned}
已知条件 ln(1+z)∣z=0=0 表明 ln(1+z) 是主值支. 而ln(1+z)=z−2z2+3+z3−4z4+5z5−⋯+(−1)nn+1zn+1+⋯(∣z∣<1)ez=n=0∑∞n!zn=1+z+2!z9+3!z3+4!z4+⋯+n!zn(∣z∣<+∞).两者的公共收敛域为 ∣z∣<1. 此时, 由级数乘积的柯西法则, 有
e
z
ln
(
1
+
z
)
=
z
+
z
2
2
+
z
3
3
+
3
40
z
5
+
⋯
(
∣
z
∣
<
1
)
.
e^z\ln(1+z)=z+\frac{z^2}{2}+\frac{z^3}{3}+\frac{3}{40}z^5+\cdots\quad(|z|<1).
ezln(1+z)=z+2z2+3z3+403z5+⋯(∣z∣<1).
4
将下列函数按
z
−
1
z-1
z−1 的幂展开,并指明其收敛范围.
(
1
)
sin
z
;
(
2
)
z
−
1
z
+
1
;
(1)\sin z;\quad(2)\:\frac{z-1}{z+1};
(1)sinz;(2)z+1z−1;
(1)本题我们尽量将已知函数向 sin ( z − 1 ) , cos ( z − 1 ) \sin(z-1),\cos(z-1) sin(z−1),cos(z−1)靠拢,以期利用后两者的幂级数展式.
因为 sin z = sin [ ( z − 1 ) + 1 ] = sin ( z − 1 ) cos 1 + cos ( z − 1 ) sin 1 \sin z=\sin[(z-1)+1]=\sin(z-1)\cos1+\cos(z-1)\sin1 sinz=sin[(z−1)+1]=sin(z−1)cos1+cos(z−1)sin1,
而
sin ( z − 1 ) = ∑ n = 0 ∞ ( − 1 ) n ( z − 1 ) 2 n + 1 ( 2 n + 1 ) ! ( ∣ z − 1 ∣ < + ∞ ) \sin(z-1)=\sum_{n=0}^\infty(-1)^n\frac{(z-1)^{2n+1}}{(2n+1)!} \quad (|z-1|<+\infty) sin(z−1)=n=0∑∞(−1)n(2n+1)!(z−1)2n+1(∣z−1∣<+∞)
sin z = cos 1 [ ( z − 1 ) − ( z − 1 ) 3 3 ! + ( z − 1 ) 5 5 ! − ⋯ ] + sin 1 [ 1 − ( z − 1 ) 2 2 ! + ( z − 1 ) 4 4 ! − ⋯ ] = ∑ k − 0 ∞ sin ( k π 2 + 1 ⊺ ) k ! ( z − 1 ) k , ( ∣ z − 1 ∣ < + ∞ ) . \begin{aligned}&\begin{aligned}\sin z=\cos1\left[(z-1)-\frac{(z-1)^3}{3!}+\frac{(z-1)^5}{5!}-\cdots\right]\end{aligned}\\&\begin{aligned}+\sin1\left[1-\frac{(z-1)^2}{2!}+\frac{(z-1)^4}{4!}-\cdots\right]\end{aligned}\\&\begin{aligned}&=\sum_{k-0}^{\infty}\frac{\sin(\frac{k\pi}{2}+1^{\intercal})}{k!}(z-1)^k,\end{aligned}&\begin{aligned}(|z-1|<+\infty).\end{aligned}\end{aligned} sinz=cos1[(z−1)−3!(z−1)3+5!(z−1)5−⋯]+sin1[1−2!(z−1)2+4!(z−1)4−⋯]=k−0∑∞k!sin(2kπ+1⊺)(z−1)k,(∣z−1∣<+∞).
(2)本题我们尽量将已知函数向 1 1 + z \frac1{1+z} 1+z1 靠拢,以期利用后者的幂级数展式.
z
−
1
z
+
1
=
z
−
1
+
2
−
2
z
−
1
+
⊺
2
=
1
−
2
2
+
z
−
1
=
1
−
1
1
+
z
−
1
2
.
\frac{z-1}{z+1}=\frac{z-1+2-2}{z-1+^\intercal2}=1-\frac2{2+z-1}=1-\frac1{1+\frac{z-1}2}.
z+1z−1=z−1+⊺2z−1+2−2=1−2+z−12=1−1+2z−11.
这样,当
∣
z
−
1
2
∣
<
1
时, 即
∣
z
−
1
∣
<
2
时,
\text{这样,当 }\left|\frac{z-1}{2}\right|<1\text{ 时, 即 }|z-1|<2\text{ 时,}
这样,当
2z−1
<1 时, 即 ∣z−1∣<2 时,
z
−
1
z
+
1
=
1
−
∑
n
=
0
∞
(
−
1
)
n
(
z
−
1
2
)
n
=
1
−
[
1
+
∑
n
=
1
∞
(
−
1
2
)
n
(
z
−
1
)
n
]
\begin{gathered}\begin{aligned}\frac{z-1}{z+1}&=1-\sum_{n=0}^\infty(-1)^n\left(\frac{z-1}{2}\right)^n\end{aligned}\\\begin{aligned}=1-\left[1+\sum_{n=1}^\infty(-\frac{1}{2})^n(z-1)^n\right]\end{aligned}\end{gathered}
z+1z−1=1−n=0∑∞(−1)n(2z−1)n=1−[1+n=1∑∞(−21)n(z−1)n]