PAT甲级 1045 Favorite Color Stripe(30)

第一次尝试

看到题目,感觉只会回溯,于是写出如下代码:

#include<bits/stdc++.h>

using namespace std;
int n_color,len, n;
vector<int> pattern, stripe;

int maxLen = -1;

void match(int idx, int j, int l) {
    if(j == n) {
        if(l > maxLen)
            maxLen = l;
        return;
    }
    if(pattern[idx] == stripe[j]) {
        ++l;
        // 继续匹配pattern[idx]位置的颜色
        match(idx, j + 1, l);
        // 否则匹配idx + 1了(如果还有的话)
        if(idx + 1 < len)
            match(idx + 1, j + 1, l);
    } else {
        // 不匹配,则只能跳过
        match(idx, j + 1, l);
    }

    // 不可能匹配idx要跳过j,因为order固定了。这样只会更短
    // match(idx,)
}

int main() {
    cin >> n_color >> len;
    pattern.resize(len);
    for(int i = 0; i < len; ++i) {
        cin >> pattern[i];
    }
    cin >> n;
    stripe.resize(n);
    for(int i = 0; i < n; ++i) {
        cin >> stripe[i];
    }
    match(0,0,0);
    cout << maxLen << endl;
}

在这里插入图片描述
提交发现思路应该是正确的,但是上述没有缓存结果,导致超时了。

第二次尝试

仔细看一下数据量,是两个串的匹配问题。(动态规划的)时间复杂度为 O ( N K ) < 1 0 5 O(NK)<10^5 O(NK)<105,肯定不会超时的,因此接下来写成DP形式。
根据上面的思路,只要逆向枚举,就可以避免反复计算一些中间值。
那么状态转移方程直接按照match方法里的写就好了,即:
d p [ i ] [ j ] = { max ⁡ ( d p [ i ] [ j + 1 ] , d p [ i + 1 ] [ j + 1 ] ) + 1 i f p a t t e r n [ i ] = = s t r i p e [ j ] d p [ i + 1 ] [ j + 1 ] e l s e dp[i][j]=\left\{ \begin{align*} &\max(dp[i][j+1],dp[i+1][j+1])+1 & & {if \quad pattern[i] == stripe[j] } \\ &dp[i+1][j+1] & &{else} \end{align*} \right. dp[i][j]={max(dp[i][j+1],dp[i+1][j+1])+1dp[i+1][j+1]ifpattern[i]==stripe[j]else
其中 i = 0 , 1 , . . . , l e n − 1 ; j = 0 , 1 , 2 , . . . , n − 1 i=0,1,..., len - 1; j= 0,1,2,...,n - 1 i=0,1,...,len1;j=0,1,2,...,n1
d p [ i ] [ j ] dp[i][j] dp[i][j]表示 p a t t e r n [ 0.. i ] pattern[0..i] pattern[0..i] s t r i p e [ 0.. j ] stripe[0..j] stripe[0..j]按照题意匹配所能得到的最大长度。
于是得到如下代码:

#include<bits/stdc++.h>

using namespace std;
int n_color, len, n;
vector<int> pattern, stripe;

int main() {
    cin >> n_color >> len;
    pattern.resize(len);
    for(int i = 0; i < len; ++i) {
        cin >> pattern[i];
    }
    cin >> n;
    stripe.resize(n);
    for(int i = 0; i < n; ++i) {
        cin >> stripe[i];
    }
    vector<vector<int>> dp(len + 1, vector<int>(n + 1));
    dp[len][n] = 0; // 

    for(int i = len - 1; i >= 0; --i) {
        for(int j = n - 1; j >= 0; --j) {
            if(pattern[i] == stripe[j]) {
                dp[i][j] = max(dp[i][j + 1], dp[i + 1][j + 1]) + 1;
            } else {
                dp[i][j] = dp[i][j + 1];
            }
        }
    }
    cout << dp[0][0] << endl;
}

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值