考虑广义储能参与灵活响应的光储氢集站实时能量管理策略
摘要:为了促进含氢能源系统中灵活性资源的综合利用,针对光储氢集站对调度指令的响应问题,提出了一种考虑广义储能参与灵活响应的光储氢集站实时能量管理策略。面向光储氢集站内电池储能、电制氢负荷等资源进行广义储能精细化建模,在集站模型中引入了考虑电-热-流耦合关系的电制氢虚拟储能模型。通过优化集站灵活性资源的出力,构建起日内-实时两级能量管理策略,在能量管理优化层面在满足运行计划的同时考虑效益最大化,并实现了电池储能电量初末状态优化;考虑系统功率波动实时进行反馈校正保证集站内功率平衡。通过算例仿真进行对比分析,证明了使用广义储能参与灵活响应的能量管理策略在提升运行经济效益、促进可再生能源消纳方面的积极作用。
关键词: 光储氢集站;氢能;能量管理策略;广义储能;灵活响应;
[1]肖碧涛,刘元,叶雨润,等.考虑广义储能参与灵活响应的光储氢集站实时能量管理策略[J/OL].电力自动化设备,1-9[2024-07-24].https://doi.org/10.16081/j.epae.202405003.
为了实现光储氢集站实时能量管理策略,我们将按照描述的步骤编写详细的MATLAB代码。这包括建立广义储能模型、优化能量管理策略、考虑电-热-流耦合关系等。
步骤 1: 建立广义储能模型
matlab
复制代码
function [stationModel] = createStationModel(batteryEnergy, hydrogenLoad, couplingFactor)
% batteryEnergy: 电池储能数据
% hydrogenLoad: 电制氢负荷数据
% couplingFactor: 电-热-流耦合系数
% 创建光储氢集站模型
stationModel = struct();
stationModel.batteryEnergy = batteryEnergy; % 电池储能
stationModel.hydrogenLoad = hydrogenLoad; % 电制氢负荷
stationModel.couplingFactor = couplingFactor; % 电-热-流耦合系数
fprintf('光储氢集站模型建立完成。\n');
end
步骤 2: 优化能量管理策略
matlab
复制代码
function [optimizedSchedule] = optimizeEnergyManagement(stationModel, operationPlan)
% stationModel: 光储氢集站模型
% operationPlan: 运行计划
% 初始化优化调度结果
optimizedSchedule = struct();
% 日内能量管理优化
intraDayOptimization = optimizeIntraDayManagement(stationModel, operationPlan);
% 实时能量管理优化
realTimeOptimization = optimizeRealTimeManagement(stationModel, operationPlan);
% 合并优化结果
optimizedSchedule.intraDay = intraDayOptimization;
optimizedSchedule.realTime = realTimeOptimization;
fprintf('能量管理策略优化完成。\n');
end
function [intraDaySchedule] = optimizeIntraDayManagement(stationModel, operationPlan)
% 日内能量管理优化
% 示例:根据运行计划进行优化
% 简单示例:假设电池电量初末状态优化
batteryInitial = stationModel.batteryEnergy(1);
batteryFinal = stationModel.batteryEnergy(end);
batteryOptimized = optimizeBatteryState(batteryInitial, batteryFinal, operationPlan);
% 构建日内优化调度
intraDaySchedule = struct();
intraDaySchedule.batteryOptimized = batteryOptimized;
% 可根据具体需求扩展其他优化策略
fprintf('日内能量管理优化完成。\n');
end
function [realTimeSchedule] = optimizeRealTimeManagement(stationModel, operationPlan)
% 实时能量管理优化
% 示例:根据系统功率波动进行实时反馈校正
% 简单示例:假设功率平衡校正
powerBalanced = adjustPowerBalance(stationModel, operationPlan);
% 构建实时优化调度
realTimeSchedule = struct();
realTimeSchedule.powerBalanced = powerBalanced;
% 可根据具体需求扩展其他实时反馈策略
fprintf('实时能量管理优化完成。\n');
end
function [batteryOptimized] = optimizeBatteryState(initialEnergy, finalEnergy, operationPlan)
% 优化电池储能初末状态
% 示例函数,可以根据具体需求扩展
% 简单示例:线性分配电池电量
batteryOptimized = linspace(initialEnergy, finalEnergy, length(operationPlan));
end
function [powerBalanced] = adjustPowerBalance(stationModel, operationPlan)
% 调整功率平衡
% 示例函数,可以根据具体需求扩展
% 简单示例:根据电-热-流耦合系数进行功率调整
couplingFactor = stationModel.couplingFactor;
powerBalanced = operationPlan * couplingFactor;
end
步骤 3: 算例仿真分析
matlab
复制代码
function runStationSimulation()
% 示例数据
batteryEnergy = rand(24, 1) * 50; % 电池储能数据
hydrogenLoad = rand(24, 1) * 20; % 电制氢负荷数据
couplingFactor = 0.8; % 电-热-流耦合系数
operationPlan = rand(24, 1) * 100; % 运行计划数据
% 步骤1:建立光储氢集站模型
stationModel = createStationModel(batteryEnergy, hydrogenLoad, couplingFactor);
% 步骤2:优化能量管理策略
optimizedSchedule = optimizeEnergyManagement(stationModel, operationPlan);
% 输出结果
disp('优化后的能量管理策略:');
disp(optimizedSchedule);
fprintf('光储氢集站实时能量管理仿真分析完成。\n');
end
% 运行仿真
runStationSimulation();
整体代码解释
建立光储氢集站模型:通过 createStationModel 函数建立光储氢集站模型,包括电池储能、电制氢负荷和电-热-流耦合系数等信息。
优化能量管理策略:通过 optimizeEnergyManagement 函数实现日内和实时两级能量管理优化,包括电池电量初末状态优化和功率平衡校正等。
算例仿真分析:在 runStationSimulation 函数中整合上述步骤,随机生成示例数据并输出优化后的能量管理策略结果。
通过此代码实现,可以模拟和优化光储氢集站的实时能量管理策略,有效提升运行经济效益并促进可再生能源的消纳能力。具体代码可以根据实际需求进一步扩展和优化。