Weakly Supervised Deep Detection Networks 学习笔记

这篇博客详细解读了Weakly Supervised Deep Detection Networks,该网络利用图像级标注信息,通过修改网络结构,实现区域选择和分类。文章介绍了网络的双流结构,避免了MIL方法的局部最优问题,并对比了与双线性架构的差异。网络包含预训练阶段,使用SPP模块处理区域提案,以及两个数据流分别进行分类和检测。最后,通过内积融合结果并应用损失函数进行优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

                                                    Weakly  Supervised  Deep  Detection  Networks 详细解读

 论文大致意思是通过图像级的标注信息训练网络达到目标检测的目的,文中采用的方法如下图所示:

abstract :提出一种弱监督的深度检测架构,通过修改网络,只利用图像级别的标注,同时执行区域选择和分类。

Introduction:1.有实验证明训练过的用于分类的CNN可能隐藏了很多关于检测需要用到的信息

                    2.方法概述:a.给定图像x,第一步是通过在CNN的卷积层之上插入SPP来有效地提取区域级描述符(x;R)。

                                         b.接着,该网络从pooled region-level features中分支成两个数据流(一个用来分类,一个用来识别)

                    3.MIL利用外观模型(appearance model)去选择候选区域,而本文使用的是独立于识别分支的专用并行检测分支选择的候选区域 。所以能够很好的避免弱监督学习常用的方法MIL的缺点即局部最优

                    4.我们的双流CNN可能和lin等人的双线性架构有轻微的关联,他们提出了一种“双线性”结构,其中两个并行网络流的输出通过取相应空间位置的特征向量的外积进行组合。作者指出,这种结构的灵感

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值