Weakly Supervised Deep Detection Networks 详细解读
论文大致意思是通过图像级的标注信息训练网络达到目标检测的目的,文中采用的方法如下图所示:
abstract :提出一种弱监督的深度检测架构,通过修改网络,只利用图像级别的标注,同时执行区域选择和分类。
Introduction:1.有实验证明训练过的用于分类的CNN可能隐藏了很多关于检测需要用到的信息
2.方法概述:a.给定图像x,第一步是通过在CNN的卷积层之上插入SPP来有效地提取区域级描述符(x;R)。
b.接着,该网络从pooled region-level features中分支成两个数据流(一个用来分类,一个用来识别)
3.MIL利用外观模型(appearance model)去选择候选区域,而本文使用的是独立于识别分支的专用并行检测分支选择的候选区域 。所以能够很好的避免弱监督学习常用的方法MIL的缺点即局部最优
4.我们的双流CNN可能和lin等人的双线性架构有轻微的关联,他们提出了一种“双线性”结构,其中两个并行网络流的输出通过取相应空间位置的特征向量的外积进行组合。作者指出,这种结构的灵感