GPT Prompt冠军调教技巧CO-STAR

新加坡政府科技局 (GovTech) 举办的首届 GPT-4 提示工程大赛冠军Sheila Teo分享了她的一些提示撰写技巧及案例分析。

请添加图片描述

使用 CO-STAR 框架撰写Prompt

请添加图片描述
CO-STAR是结构化的Prompt模版六大要素的首字母缩写,即:
© Context 上下文:为任务提供背景信息 通过为大语言模型(LLM)提供详细的背景信息,可以帮助它精确理解讨论的具体场景,确保提供的反馈具有相关性。

(O) Objective 目标:明确你要求大语言模型完成的任务 清晰地界定任务目标,可以使大语言模型更专注地调整其回应,以实现这一具体目标。

(S) Style 风格:明确你期望的写作风格 你可以指定一个特定的著名人物或某个行业专家的写作风格,如商业分析师或 CEO。这将指导大语言模型以一种符合你需求的方式和词汇选择进行回应。

(T) Tone 语气:设置回应的情感调 设定适当的语气,确保大语言模型的回应能够与预期的情感或情绪背景相协调。可能的语气包括正式、幽默、富有同情心等。

(A) Audience 受众:识别目标受众 针对特定受众定制大语言模型的回应,无论是领域内的专家、初学者还是儿童,都能确保内容在特定上下文中适当且容易理解。

® Response响应:规定输出的格式 确定输出格式是为了确保大语言模型按照你的具体需求进行输出,便于执行下游任务。常见的格式包括列表、JSON 格式的数据、专业报告等。对于大部分需要程序化处理大语言模型输出的应用来说,JSON 格式是理想的选择。

实际案例使用前后比较

背景:为 开源项目 Shoulder 编写项目介绍

使用 CO-STAR 前

在这里插入图片描述

可能是我提示词写的不够好,最后还是自己写,效果如下:
普通GPT使用,无promt

使用CO-STAR后

在这里插入图片描述
co-star promt方式GPT

使用后,GPT 输出的内容吸引力比我自己写的明显高了一些 👀【震惊!】

具体提示词和输出

使用CO-STAR前提示词

Prompt

作为开源项目专家。请先仔细回忆如何在 github 项目上,写好一段简洁的项目介绍。然后为开源项目 shoulder 写一段项目介绍,参考 https://doc.itlym.cn/shoulder.html


输出

在GitHub上撰写项目介绍时,应当遵循以下原则:

简洁明了:介绍应简洁扼要,避免冗长和复杂的句子。
功能突出:明确列出项目的主要功能和优势。
目标受众:指明项目的目标用户或开发者群体。
使用场景:简要描述项目的应用场景或解决的问题。
入门指南:提供快速开始的指南或链接到详细的文档。
社区参与:鼓励社区贡献和参与,提供贡献指南或联系方式。
根据上述原则和提供的文档链接,以下是为开源项目Shoulder撰写的项目介绍:

Shoulder - 强大的后端开发框架
Shoulder是一个为现代Java后端开发而设计的开源框架,它集成了多种核心功能,包括错误码管理、国际化支持、并发工具、全局唯一ID生成、全局锁等。它旨在简化开发流程,提高开发效率,并确保应用的安全性和可维护性。

主要特性:
错误码与国际化:统一的错误码管理和多语言支持,让错误处理和本地化更加简单。
并发与安全性:提供强大的并发工具和加密功能,包括AES、RSA等,保障数据安全。
数据库支持:包括全局序列生成、多数据源管理、多租户架构等,强化了Mybatis-Plus的功能。
操作日志:通过AOP技术实现操作日志的批量记录和异步化处理,支持多种存储和格式。
认证与授权:集成了验证码、JWT等多种认证授权机制,保障应用安全。
高级功能:包括Maven插件、Idea插件等,提高开发效率。
低依赖与嵌入式模式:支持内嵌数据库和Redis,提供无数据库持久化方案和接口Mock功能。
快速开始:
访问文档获取详细的使用指南和设计精华。
克隆项目并遵循README中的步骤开始您的开发之旅。
社区贡献:
我们欢迎任何形式的贡献,无论是代码、文档、bug报告还是功能请求。请查看我们的贡献指南了解更多详情。

请注意,上述介绍是一个示例,实际的项目介绍应根据项目的具体情况进行调整。

使用 CO-STAR 后提示词

Prompt

# CONTEXT #
我想为我的开源项目写一段广告性质的项目介绍。开源项目的名字叫 Shoulder,是 Spring Boot 的一个开发提效插件,这是他的介绍网页 https://doc.itlym.cn/shoulder.html 
# OBJECTIVE #
在 github 的项目介绍上编写一段120字以内的介绍,旨在让人们点击项目链接进行了解、点赞或 fork。
# TONE #
有说服力的
# AUDIENCE #
该项目的受众群通常是有1年以上开发经验的Java开发者。定制你的介绍,以针对这些受众在开源项目中通常想要的东西。
# RESPONSE #
Github上Shoulder项目的介绍简洁而有影响力。

输出

提升你的Spring Boot开发效率!Shoulder,专为Java开发者设计的开源插件,集成了错误码、国际化、并发工具等核心特性。一键式AOP监控、多租户支持、高级加密,让开发更安全、高效。立即体验,点赞并fork,加入我们的开发社区![点击了解更多](https://gitcode.com/ChinaLym/shoulder-framework)

可以看出,应用了CO-STAR的Prompt的输出更加有针对性,也更具体,有效。


文末

本文使用的 GPT 工具是国内可免费使用的 kimi,关注我,获取更多提效技巧! 🚀

PS:小伙伴们,你们在用哪些GPT工具,使用体验怎样?

<think>嗯,用户让我介绍一下“prompt中文调教”,首先我需要理解这个术语的具体含义。可能是指如何调整或优化中文提示(prompt)来提升AI模型的输出效果。接下来,我需要考虑用户可能的背景和使用场景,比如他们可能在使用聊天机器人、文本生成模型或者进行自然语言处理任务时遇到问题,希望通过调整提示来获得更准确的回答。 用户可能想知道具体的调教方法,比如如何构造有效的提示、有哪些技巧或最佳实践。他们可能对技术细节不太熟悉,所以需要解释得通俗易懂。同时,用户可能希望了解一些实际例子,以便更好地应用这些方法。 我需要确保回答结构清晰,分步骤或分点说明,可能包括定义、目的、常见方法、示例和注意事项。还要检查是否需要涵盖不同模型(如GPT、ERNIE等)的调教差异,或者是否专注于某个特定平台或工具。此外,用户可能关心如何避免常见错误,比如模糊的提示或过度复杂的结构。 还要注意用户提到的系统级指令,比如正确使用LaTeX格式,虽然问题本身不涉及数学,但如果有相关例子可能需要遵守。但当前主题是中文调教,可能不太涉及数学表达式,不过要留意用户是否有隐藏的需求,比如在技术文档中使用数学符号的情况。 另外,用户要求用中文回答,保持口语化,但需要避免使用Markdown格式。需要确保语言流畅,信息准确,并且符合用户的知识水平。可能需要举例说明如何从模糊的提示改进到具体的提示,比如调整问题表述、增加上下文等。 最后,要检查是否有遗漏的关键点,比如调教中的伦理问题,或者数据隐私方面的考虑,但用户没有明确提到这些,可能不需要深入。重点放在实用技巧和步骤上,帮助用户快速上手优化他们的中文提示。</think>关于“中文Prompt调教”,本质是通过优化输入指令(prompt),让AI更精准地理解需求并输出理想结果。以下是调教的关键步骤和技巧--- ### 一、调教目标 1. **消除歧义**:中文多义词多,需明确语境 ❌ 模糊提问:“分析苹果” ✅ 明确指令:“从商业角度分析苹果公司2023年iPhone的全球市场份额” 2. **控制输出结构**:指定格式或框架 ❌ 普通提问:“写读书笔记” ✅ 结构化指令:“用三栏表格对比《百年孤独》与《红楼梦》的(1)叙事结构(2)家族主题(3)魔幻现实主义手法” --- ### 二、核心方法 #### 方法1:角色设定法 ```text 例:假设你是清华大学经济学教授,用通俗比喻解释“蒙代尔不可能三角” 要求:①分点说明 ②每点配生活案例 ③结尾用一句话总结 ``` #### 方法2:STAR法则(情境-任务-行动-结果) ```text [情境] 我需要为跨境电商设计营销文案 [任务] 针对25-35岁日本女性消费者推广中式汉服 [行动要求] 结合樱花季元素,避免文化敏感词 [结果格式] 输出3条日文 slogan + 中文注释 ``` #### 方法3:反向约束 ```text 请用300字说明量子计算的原理,要求: - 禁止使用“叠加态”“纠缠”等专业术语 - 用快递分拣系统作类比 - 结尾提出1个反常识的观点 ``` --- ### 三、进阶技巧 1. **动态修正**: - 首轮提问:“列举数字化转型案例” - 二轮修正:“刚才案例偏重制造业,请补充3个农业领域案例,需包含无人机应用” 2. **语义脚手架**: $$输出结构 = 核心论点 + [证据来源] + \frac{正面论证}{反面质疑}$$ 3. **文化适配**: - 对文学类提问添加:“请结合《文心雕龙》的创作论分析” - 对科技类指令强调:“参照《中国制造2025》政策方向” --- ### 四、避坑指南 1. **避免过度堆砌**: ❌ “用SWOT分析、PEST模型、波特五力多维度论证...” ✅ 明确优先级:“主要用SWOT分析,在竞争格局部分结合波特五力” 2. **警惕语义稀释**: 错误示例:“请写一首既浪漫又科学还要包含杜甫诗风的七夕古诗” 优化思路:分阶段实现 → 先生成科学意象诗句,再要求加入唐诗用典 --- ### 五、工具推荐 1. **提示词库**: - 中文Prompt模板库(GitHub开源项目) - 深度求索(DeepSeek)官方提示指南 2. **自检清单**: ✅ 是否包含具体场景? ✅ 是否限定知识领域? ✅ 是否指定拒绝范围? ✅ 是否预设纠错机制? 通过持续迭代验证,可逐步掌握“需求翻译”能力。建议从简单任务开始调教,逐步增加复杂度,并观察不同模型(如GPT-4、文心一言、通义千问)的响应差异。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值