dqn 打砖块 Env 对原始gym的Env进行包装

本文介绍了如何使用DQN算法包装原始的gym环境来玩打砖块游戏。游戏结束时的负反馈值对于网络收敛至关重要,作者发现设置为-2的效果最佳。同时,对输入图像进行剪裁,去除不必要的元素,以减少噪声输入并增强小球速度信息的反映。
摘要由CSDN通过智能技术生成

原文链接: dqn 打砖块 Env 对原始gym的Env进行包装

上一篇: fast style transfer 快速风格转换 导出视频

下一篇: dqn 打砖块 model Dueling 网络结构

游戏结束后的负反馈值的大小很影响网络收敛...目前发现设置为-2效果比较好,-1难收敛,-3直接会train不了....

对输入图像进行处理剪裁,去除了计分板和边界等多余东西,相当于减少噪声输入

b96be33ec3fc4dfcbbee6a868b3ca7d4b40.jpg

52ffecabf2fe7ef8a03604a6aeb59dc0f53.jpg

import numpy as np
import gym
import cv2 as cv
import matplotlib.pyplot as plt


# 输入必须是多副图像,因为单张图像无法获取到小球的速度信息!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值