dqn 打砖块 测试pb文件

本文介绍了使用DQN算法在打砖块游戏中进行测试,通过加载TensorFlow的PB模型文件实现智能游戏策略。文章提供了一个视频链接,展示了网络在简单奖惩机制下学习到的策略,能够得分超过400分。
摘要由CSDN通过智能技术生成

原文链接: dqn 打砖块 测试pb文件

上一篇: dqn 打砖块 model Dueling 网络结构

下一篇: dqn 打砖块 train 线程刷新

视频

https://www.bilibili.com/video/av45412503/

目前效果很棒!

在简单的奖惩激励下,网络学会了使用小球将两边打开后把小球打上去来获取大量分数目前最好的结果是跑了400多分

import tensorflow as tf
from Breakout import Env
import numpy as np
import time

# PB_PATH = './pb_backup/score_13.0.pb'
# PB_PATH = './pb3/score_96.0.pb'
PB_PATH = './pb10/score_406.0.pb'

sess = tf.Session()
output_graph_def = tf.GraphDef()
with open(PB_PATH, "rb") as
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值