StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

paper motivation

Pix2Pix模型解决了有Pair对的数据翻译问题;CycleGAN解决了Unpaired数据下的图像翻译问题。但无论是Pix2Pix还是CycleGAN,都是解决了一对一的问题,即一个领域到另一个领域的转换。当有很多领域要转换时,对于每一个领域转换,都需要重新训练一个模型去解决。例如加入有K个领域,就需要训练K(K-1)个生成模型,这样的行为太低效了。本文所介绍的StarGAN就是将多领域转换用统一框架实现的算法。
在这里插入图片描述

主要贡献 创新点

  • 提出了StarGAN,一个全新的生成对抗网络。只要一个生成网络G和判别网络D就可以实现多领域的转换。
  • 提供了一种掩码向量方法,StarGAN能够通过掩码向量在不同数据集进行多目标领域的迁移。
  • 在人脸属性转移和表情改变方面StarGAN效果很好

主要思想

在网络结构上为了让生成网络G拥有学习多个领域转换的能力,需要对生成网络G和判别网络D做如下改动。

  • 在G的输入中添加目标领域信息,即把图片翻译到哪个领域这个信息告诉生成模型,生成模型通过信息进行翻译。

  • 判别网络D除了具有判断图片是否真实的功能外,还要有判断图片属于哪个类别的能力。这样可以保证输入生成网络G中同样的图像,随着目标领域的不同映射到不同的领域。

  • 还需要保证图像翻译过程中图像身份信息不丢失,只改变领域差异的那部分。因此需要对生成图像进行图像重建,图像重建即将图像翻译从领域A翻译到领域B,再翻译回来。

    网络训练如下图所示:
    在这里插入图片描述
    (a)判别网络D不仅要学习去辨别图像的真假,还需要学习去辨别真实图像属于哪个领域。(b)生成网络G将图像和目标领域作为输入,直接在张量上concatenated,输出Fake image 。(c)生成网络试图通过original domain和Fake image重建图像。(d)通过判别网络D去更新生成网络G。G试图去生成Fake image去骗过判别网络为真实图像,并分类为target domain。

损失函数

Adversarial Loss
为了让图像接近真实
L a d v = E x [ log ⁡ D s r c ( x ) ] + E x , c [ log ⁡ ( 1 − D s r c ( G ( x , c ) ) ] \begin{aligned} \mathcal { L } _ { a d v } = & \mathbb { E } _ { x } \left[ \log D _ { s r c } ( x ) \right] + & \mathbb { E } _ { x , c } \left[ \log \left( 1 - D _ { s r c } ( G ( x , c ) ) \right] \right. \end{aligned} Ladv=Ex[logD

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值