Latent Cross: Making Use of Context in Recurrent Recommender Systems简析

文章探讨了如何在循环神经网络(RNN)推荐系统中利用上下文信息。作者分析了YouTube的RNN模型,并提出Latent Cross方法,通过将上下文特征与RNN隐状态点积,增强模型对情境的理解。实验表明,时间、设备和页面等上下文特征对模型性能提升显著。
摘要由CSDN通过智能技术生成

Latent Cross: Making Use of Context in Recurrent Recommender Systems

Introduction

在本文中,作者首先研究了在前馈神经网络中将情景特征直接构造出特征的方式对于捕捉特征交叉效果一般。然后作者介绍了Youtube中使用的RNN模型,最后提出了Latent Cross模型,通过将情景特征和RNN中隐状态做点积的方式将情景信息添加到模型中。

RNN Baseline

Framework

在这里插入图片描述

Context Feature

作者提到模型有效的关键就是引入了情景特征,而不仅仅是视频的序列。这里主要提到了三种情景特征。首先是时间特征, Δ t ( τ ) = l o g ( t ( τ + 1 ) − t ( τ ) ) \Delta t^{(\tau)}=log(t^{(\tau+1)}-t^{(\tau)}) Δt(τ)=log(t(τ+1)t(τ)),不用多说时间特征对提高模型准确度的重要性。其次是Software Client,视频可以在不同的设备上浏览,比如短视频更容易在手机上观看。最后是Page,就是浏览视频的页面的上一个页面(跳转前的页面),比如从网站主页面开始浏览的话可能对新内容更容易接受,而从一个具体的视频页面跳转之后可能对一个特定的主题更感兴趣。

  • Pre- and Post-Fusion

这里将情景特征标记为 c ( τ ) c^{(\tau)} c(τ)。如框架图所示,情景特征可以从网络的底部作为输入(称作pre-fusion),也可以和RNN的输出concat一起(称作post-fusion)。 c ( τ − 1 ) c^{(\tau-1)} c

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值