Recurrent Recommender Networks

本文提出了一种使用LSTM的Recurrent Recommender Networks,旨在捕捉用户和电影随时间变化的动态性,从而提升推荐精度。通过与静态模型和其他动态模型的对比,表明RNN模型在电影推荐任务中具有更高的预测准确性和训练效率,特别是在处理大量评分数据时。
摘要由CSDN通过智能技术生成

本文思路整理如下:

 

一, Contribution

二, 实验

实际需求

训练数据

实验环境

2.1本文模型

2.2 结果对比

2.2.1 将本文RNN模型和不考虑时间动态的模型做对比

2.2.2 将本文RNN模型和考虑时间动态的模型做对比

三, 更多关于论文细节


Recurrent Recommender Networks


目的:采用LSTM构建模型,以适应usermovie的动态性,从而得以更精准做视频推荐。

 

论文信息:德克萨斯奥斯汀校、谷歌、CMULinkedInProceedings of the 10th ACM International Conference on Web Search and Data Mining.


一,Contribution:


1)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值