算法:一个二维矩阵表示岛屿,上面的数值代表高度,找出下雨时可以形成的最长路径,返回最长长度

一个二维矩阵表示岛屿,上面的数值代表高度,找出下雨时可以形成的最长路径,返回最长长度,没经过一个点长度都加1,对于每个位置都可以走上,下,左,右四个位置。

例子:

8   4   1
6   5   2

对于上面这个矩阵,最长路径为5,可以为8->6->5->4->1或者8->6->5->2->1。


思路,类似于岛问题,但是这里需要注意的是,这题根本不需要考虑“反复进入同一个位置”的这些情况,也就是不需要visited数组来记录哪些节点已经到过,因为所有可达的路径都是降序的,既然是降序,自然不可能反复进入一个点,因为这就不满足降序了,一定会提前结束掉。

因此,递归里面一个pre记录上一个值是什么,下一轮递归的时候直接比较,如果大于等于直接结束。否则继续向下递归,然后path+1。这里为了避免重复计算,使用hashmap作为备忘录。


	public static int res=0;
	public static HashMap<String,Integer> map=new HashMap<>();
	public static void process(int[][] arr){
		for(int i=0;i<arr.length;i++){
			for(int j=0;j<arr[0].length;j++){
				res=Math.max(process1(arr,Integer.MAX_VALUE,i,j,0),res);
			}
		}
	}
	public static int  process1(int[][] arr,int pre,int i,int j,int already){
		if(i<0||i>=arr.length||j<0||j>=arr[0].length||arr[i][j]>=pre){//如果超过边界,或者这个点之前来过
			//res=Math.max(res, already);
			return already;
		}
		String str=pre+","+i+","+j;
		if(map.containsKey(str))
			return map.get(str);
		//注,不需要visited标记以前走过的路,因为不可能再次进入同一个点
		int res1=process1(arr,Math.abs(arr[i][j]),i+1,j,already+1);
		int res2=process1(arr,Math.abs(arr[i][j]),i-1,j,already+1);
		int res3=process1(arr,Math.abs(arr[i][j]),i,j+1,already+1);
		int res4=process1(arr,Math.abs(arr[i][j]),i,j-1,already+1);
		int res=Math.max(res1, Math.max(res2, Math.max(res3,res4)));
		map.put(str,res);
		return res;
	}
	public static void main(String[] args) {
		// TODO Auto-generated method stub
		int[][] arr={{8,4,1},{6,5,2}};
		process(arr);
		System.out.println(res);
	}

 

矩阵岛屿一个常见的计算机算法问题,通常用于解决图论和搜索相关的问题。在Python中,我们可以使用深度优先搜索(DFS)算法来解决矩阵岛屿问题。 首先,我们需要将矩阵表示一个二维数组。每个元素可以通过0或1来表示,其中0表示水域,1表示陆地。我们需要遍历整个二维数组,当遇到1(表示陆地),就进行DFS搜索,找到与当前陆地相邻的所有陆地,将其标记为已访问,并继续搜索相邻的陆地。通过这样的遍历和搜索,我们可以计算出矩阵中的岛屿数量。 下面是一个简单的Python实现示例: ```python def dfs(grid, i, j): # 判断当前坐标是否越界或者已经访问过 if i < 0 or i >= len(grid) or j < 0 or j >= len(grid[0]) or grid[i][j] != 1: return # 标记当前坐标为已访问 grid[i][j] = '#' # 搜索上下左右四个方向 dfs(grid, i - 1, j) dfs(grid, i + 1, j) dfs(grid, i, j - 1) dfs(grid, i, j + 1) def numIslands(grid): count = 0 for i in range(len(grid)): for j in range(len(grid[0])): if grid[i][j] == 1: # 发现一个新的岛屿,进行DFS搜索 dfs(grid, i, j) count += 1 return count # 示例输入 grid = [ [1, 1, 0, 0, 0], [1, 1, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 1, 1] ] # 调用函数计算岛屿数量 islands = numIslands(grid) print("岛屿数量为:", islands) ``` 运行上述代码,输出结果为:岛屿数量为:3。表示给定的矩阵中有3个岛屿。这就是通过深度优先搜索算法来解决矩阵岛屿问题的一个简单实现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值