GEE:降水量数据下载(每日/每月/每年/每五年)

数据集: CHIRPS Daily: Climate Hazards Group InfraRed Precipitation With Station Data (Version 2.0 Final)
数据说明: Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) 是一个记录了1981年到当前全球降雨量的数据集。CHIRPS将0.05°分辨率的卫星图像与in-situ站点数据结合,创建网格化的降雨时间序列,用于趋势分析和季节性干旱监测。


2012年年度平均降水量图
在这里插入图片描述
1993年-2012年年度平均降水量图下载代码

//加入矢量边界之后直接运行
var ROI = table.geometry();

Map.addLayer(ROI,{},'ROI');

for(var i = 1993;i<=2012;i++){

var CHIRPS_Daily = ee.ImageCollection("UCSB-CHG/CHIRPS/DAILY")
                     .filterDate(i+'-01-01', i+'-12-31')
                     .select('precipitation')

var CHIRPS_Year_mean = CHIRPS_Daily.mean().clip(ROI)

var precipitationVis = {
    min: 1.0,
    max: 17.0,
    palette: ['001137', '0aab1e', 'e7eb05', 'ff4a2d', 'e90000'],
};

print(CHIRPS_Year_mean)

Map.addLayer(CHIRPS_Year_mean, precipitationVis, i+'_CHIRPS_Year_mean');

// Map.addLayer(CHIRPS_Daily.first().clip(ROI), precipitationVis, 'CHIRPS_Year_mean_first');

Export.image.toDrive({
      image: CHIRPS_Year_mean,
      description: i+'year_mean',
      region: ROI,
      maxPixels: 1e13,
      folder: 'CHIRPS'
    })
    
}

2012年5月平均降水量图
在这里插入图片描述

2011年-2012年每个月平均降水量图下载代码

var ROI = table.geometry();

Map.addLayer(ROI,{},'ROI');

for(var i = 2011;i<=2012;i++)
{
	for(var j = 1;j<=12;j++)
	{
		var CHIRPS_Daily = ee.ImageCollection("UCSB-CHG/CHIRPS/DAILY")
		                     .filter(ee.Filter.calendarRange(j,  j,'month'))
		                     .filter(ee.Filter.calendarRange(i, i, 'year'))
							 .map(function(img) {
							      return img.set('year', img.date().get('year'));
							  }).filterBounds(ROI)
							 .select('precipitation')
		
		var CHIRPS_Year_mean = CHIRPS_Daily.mean().clip(ROI)
		
		var precipitationVis = {
		    min: 1.0,
		    max: 17.0,
		    palette: ['001137', '0aab1e', 'e7eb05', 'ff4a2d', 'e90000'],
		};
		
		print(CHIRPS_Year_mean,i+'_year_'+j+'_CHIRPS_Year_mean')
		
		Map.addLayer(CHIRPS_Year_mean, precipitationVis, i+'_year_'+j+'_CHIRPS_Year_mean');
		
		// Map.addLayer(CHIRPS_Daily.first().clip(ROI), precipitationVis, 'CHIRPS_Year_mean_first');
		
		Export.image.toDrive({
		      image: CHIRPS_Year_mean,
		      description: i+'_year_'+j+'_month_mean',
		      // description: '2012year',
		      // crs: "EPSG:32649",
		      // scale: 30,
		      region: ROI,
		      maxPixels: 1e13,
		      folder: 'CHIRPS'
		})   
    }
}

每日的降水数据代码

var dataset = ee.ImageCollection('UCSB-CHG/CHIRPS/DAILY')
                .filter(ee.Filter.date('2018-05-01', '2018-05-03'));
                  
var precipitation = dataset.select('precipitation');

var precipitationVis = {
    min: 1.0,
    max: 17.0,
    palette: ['001137', '0aab1e', 'e7eb05', 'ff4a2d', 'e90000'],
};

Map.setCenter(17.93, 7.71, 2);

Map.addLayer(precipitation, precipitationVis, 'Precipitation');

Gee计算(Google Earth Engine)是一款强大的在线数据处理和分析工具,主要用于地理空间数据分析。如果你需要编写一个用于计算某个地理位置每月异常值的脚本,首先你需要熟悉JavaScriptJavaScriptGEE的主要编程语言),并了解其库提供的统计功能。 以下是一个简单的示例,假设你已经有了一个包含地理位置和时间序列数据的表集(DataFrame-like object): ```javascript // 导入必要的模块 var ee = require('ee'); var eeGeometry = require('ee.Geometry'); // 定义你的地理位置 var location = ee.Geometry.Point([-122.4194, 37.7749]); // 旧金山坐标 // 获取表集,并限制到特定地点 var dataset = // 加载你的数据集,可能是MODIS、Sentinel等遥感数据 .filter(ee.Filter.eq('location', location)); // 提取月份和数据列 var monthsData = dataset.select(['month', 'your_data_column']); // 计算每个月的数据平均值 var monthlyMeans = monthsData.reduceColumns({ reducer: ee.Reducer.mean(), selectors: ['your_data_column'] }, {dimension: 'month'}); // 计算每月的异常值,这里可以用标准差作为阈值 var stdDev = monthlyMeans.stdDev(); var anomalies = monthlyMeans.map(function(monthMean) { return monthMean.set('anomaly', Math.abs(monthMean - monthMean.reduce(ee.Reducer.mean())) > stdDev); }); // 将结果保存或可视化 // anomalies.map(toVisFormat).getInfo(); // 如果你想查看结果 ``` 这个脚本首先筛选出指定位置的数据,然后计算每月数据的平均值,接着计算每个月的标准差并确定哪些值被视为异常。请注意,这只是一个基本框架,实际应用可能需要根据数据的具体情况调整计算方法和阈值。
评论 29
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_养乐多_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值