GEE:计算非水体概率影像(水体淹没次数)

本文介绍了如何在Google Earth Engine (GEE) 平台上利用哨兵卫星数据和大津算法(OTSU)来计算沿海地区的非水体概率图像。通过提取水体指数并统计非水体像素出现的频率,得到的概率范围为0-100。文章详细展示了结果、原理和实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:CSDN @ _养乐多_

本文记录了在GEE平台上使用哨兵数据计算沿海地区非水体概率图像的计算方法和代码。基于像素,概率范围0-100。
首先使用哨兵数据(s2)和大津算法(OTSU)计算的水体指数阈值来提取水体,然后计算研究区非水体像素在时间段内出现的概率。

结果如下图所示,

在这里插入图片描述



一、结果展示


二、原理详解

先将同一天的影像合成为一副,然后计算每一期影像的水体指数,根据OTSU算法计算的阈值分类水体和非水体,将每一个时间序列上的非水体像素做统计,计算非水体像素出现的次数除以总像素数,得到非水体概率影像。

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_养乐多_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值