作者:CSDN @ _养乐多_
本文记录了在Google Earth Engine(GEE)平台上进行 Kriging 插值的介绍和代码案例。本文通过选取的2013年陕西省生物量样本点数据为例,利用 Kriging 插值对未知区域做了插值计算。
Google Earth Engine(GEE)是一个用于分析地理空间数据的云平台,其中包含了许多地理空间分析工具和算法,其中就包括了Kriging插值方法。Kriging是一种空间插值技术,其基本思想是通过已知的样本点对未知位置上的数据进行估计。Kriging方法是一种基于统计学理论的插值方法,适用于具有空间自相关性的数据。
在GEE中,Kriging插值方法被实现为ee.Image.interpolate()函数的一个选项。该函数接受一个包含样本点和它们的值的ee.FeatureCollection对象和一个ee.Image对象作为输入,并返回一个插值后的图像。
以下是使用Kriging插值得到的结果展示:

一、克里金插值函数
GEE中的kriging函数使用经验半变异函数(EBVF)来计算权重。EBVF是指从现有数据点的距离和半变异函数中得出的函数,它可以根据样本之间的空间相关性来调整权重。kriging函数基于半变异函数和最小二乘法来计算最优拟合,从而预测未知区域的值。
kriging(propertyName, shape, range, sill, nugget, maxDistance, reducer)
克里金插值(属性名称、形状、范围、窗台、块金、最大距离、归纳方法)返回在每个像素处对 Kriging 估计器进行采样的结果。
参数:
this:集合(FeatureCollection ):
用作估计源数据的特征集合。
属性名称(字符串):
要估计的属性(必须是数字)。
形状(字符串):
半变异函数形状({指数、高斯、球形}之一)。exponential, gaussian, spherical
范围(浮点型):
半变异函数范围,以米为单位。
窗台(浮点型):
半变异函数基台。
核函数(浮点型):
半变异函数。
最大特征的半径( Float , default: null ) :
确定每个像素的计算中包含哪些特征的半径,以米为单位。默认为半变异函数的范围。
reducer (Reducer ,默认值:null ):
Reducer 用于将重叠点的“propertyName”值折叠为单个值。
返回:影像
执行插值的邻域大小由参数指定 maxDistance。较大的尺寸将导致更平滑的输出但更慢的计算。
二、代码案例
//加入矢量边界
var roi = ee.FeatureCollection("users/949384116/Shaanxi");
//加入生物量样本数据
var sampleCollection_2013 = ee.FeatureCollection('users/949384116/2013sample');
//kriging插值函数
var kriging = sampleCollection_2013.kriging({
range: 150000,//每个点的缓冲区大小
propertyName: 'biomass',//矢量数据中需要插值的波段
shape: "gaussian",//可选:指数exponential, 高斯gaussian, 球形spherical
sill: 1.0,
nugget: 0.1,
reducer: "mean"
}).clip(roi);
//矢量数据可视化参数
var styleParams = {
fillColor: 'b5ffb4',
color: '00909F',
width: 1.0,
};
//克里金影像可视化参数
var viz = {min:0, max:80, palette:'green, blanchedalmond, orange, black'};
//以样本点为中心显示
Map.centerObject(sampleCollection_2013, 6);
//可视化影像和矢量边界
Map.addLayer(roi, styleParams, "roi");
Map.addLayer(kriging, viz, "kriging");
Map.addLayer(sampleCollection_2013, {}, "sampleCollection_2013");