GEE:克里金 Kriging 空间插值(以陕西省2013年生物量为例)

本文详细介绍了如何在Google Earth Engine (GEE)上应用克里金(Kriging)空间插值技术,以2013年陕西省生物量数据为例。GEE的ee.Image.interpolate()函数结合经验半变异函数(EBVF)进行插值计算,提供了一种估算未知区域数据的方法。文章还提供了克里金插值函数的参数解析和代码案例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:CSDN @ _养乐多_

本文记录了在Google Earth Engine(GEE)平台上进行 Kriging 插值的介绍和代码案例。本文通过选取的2013年陕西省生物量样本点数据为例,利用 Kriging 插值对未知区域做了插值计算。

Google Earth Engine(GEE)是一个用于分析地理空间数据的云平台,其中包含了许多地理空间分析工具和算法,其中就包括了Kriging插值方法。Kriging是一种空间插值技术,其基本思想是通过已知的样本点对未知位置上的数据进行估计。Kriging方法是一种基于统计学理论的插值方法,适用于具有空间自相关性的数据。

在GEE中,Kriging插值方法被实现为ee.Image.interpolate()函数的一个选项。该函数接受一个包含样本点和它们的值的ee.FeatureCollection对象和一个ee.Image对象作为输入,并返回一个插值后的图像。

以下是使用Kriging插值得到的结果展示:



一、克里金插值函数

GEE中的kriging函数使用经验半变异函数(EBVF)来计算权重。EBVF是指从现有数据点的距离和半变异函数中得出的函数,它可以根据样本之间的空间相关性来调整权重。kriging函数基于半变异函数和最小二乘法来计算最优拟合,从而预测未知区域的值。

kriging(propertyName, shape, range, sill, nugget, maxDistance, reducer)
克里金插值(属性名称、形状、范围、窗台、块金、最大距离、归纳方法)

返回在每个像素处对 Kriging 估计器进行采样的结果。
参数:
this:集合(FeatureCollection ):
用作估计源数据的特征集合。
属性名称(字符串):
要估计的属性(必须是数字)。
形状(字符串):
半变异函数形状({指数、高斯、球形}之一)。exponential, gaussian, spherical
范围(浮点型):
半变异函数范围,以米为单位。
窗台(浮点型):
半变异函数基台。
核函数(浮点型):
半变异函数。
最大特征的半径( Float , default: null ) :
确定每个像素的计算中包含哪些特征的半径,以米为单位。默认为半变异函数的范围。
reducer (Reducer ,默认值:null ):
Reducer 用于将重叠点的“propertyName”值折叠为单个值。
返回:影像

执行插值的邻域大小由参数指定 maxDistance。较大的尺寸将导致更平滑的输出但更慢的计算。

二、代码案例

//加入矢量边界
var roi = ee.FeatureCollection("users/949384116/Shaanxi");

//加入生物量样本数据
var sampleCollection_2013 = ee.FeatureCollection('users/949384116/2013sample');

//kriging插值函数
var kriging = sampleCollection_2013.kriging({
 range: 150000,//每个点的缓冲区大小
 propertyName: 'biomass',//矢量数据中需要插值的波段
 shape: "gaussian",//可选:指数exponential, 高斯gaussian, 球形spherical
 sill: 1.0,
 nugget: 0.1,
 reducer: "mean"
}).clip(roi);

//矢量数据可视化参数
var styleParams = {
  fillColor: 'b5ffb4',
  color: '00909F',
  width: 1.0,
};

//克里金影像可视化参数
var viz = {min:0, max:80, palette:'green, blanchedalmond, orange, black'};

//以样本点为中心显示
Map.centerObject(sampleCollection_2013, 6);

//可视化影像和矢量边界
Map.addLayer(roi, styleParams, "roi");
Map.addLayer(kriging, viz, "kriging");
Map.addLayer(sampleCollection_2013, {}, "sampleCollection_2013");
GEE(Google Earth Engine)是一款基于云计算平台的地理信息处理引擎,可以进行高效的地理数据分析和可视化。在遥感图像处理中,常常会出现云遮挡的问题,也就是图像上会有一些云的区域,这些区域可能会影响后续的分析和应用。 为了解决图像中的云遮挡问题,可以使用线性插值方法进行去云空洞的处理。线性插值是一种简单而有效的插值方法,它通过已知数据点之间的线性关系,来预测未知点的数值。 在去云空洞的过程中,我们可以先找到没有云的参考区域,以此作为已知数据点。然后,通过线性插值的方法,将参考区域的数值与云遮挡区域的边界上的数值进行对应,从而填补云洞。 具体步骤如下:首先,将图像进行分割,将云遮挡区域与没有云的参考区域分开。然后,找到云遮挡区域与参考区域的边界,并确定插值的方向。接下来,利用云遮挡区域与参考区域边界上的点,通过线性插值计算出云洞中的像素值。最后,将计算得到的像素值填充到云遮挡区域中,完成去云空洞的过程。 线性插值方法填补去云空洞的优点是简单而有效,能够快速高效地解决遥感图像中的云遮挡问题。然而,线性插值方法也存在一些缺点,如对于复杂的地貌或纹理变化明显的区域,线性插值可能无法准确预测未知点的数值,需要结合其他更复杂的插值方法来处理。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_养乐多_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值