GEE:面对对象土地利用分类(结合SNIC、GLCM 和机器学习算法)

本文详细解读了如何在Google Earth Engine(GEE)中结合SNIC、GLCM和机器学习算法进行面向对象的土地利用/土地覆盖(LULC)分类。论文中提供了在GEE中处理S2数据的代码,包括用于分类的特征影像生成和两种机器学习算法(SVM、RF)的应用。通过预处理、特征提取和分类,实现了LULC的高效分类。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文将介绍在Google Earth Engine中结合SNIC、GLCM和机器学习算法的面向对象的土地利用/土地覆盖(LULC)分类方法。

本文是对论文“Object-oriented LULC classification in Google Earth Engine combining SNIC, GLCM, and Machine Learning algorithms”中使用到的方法和代码的详细解读。

结果如下图所示,

在这里插入图片描述



一、论文介绍

“Object-oriented LULC classification in Google Earth Engine combining SNIC, GLCM, and Machine Learning algorithms”, Remote Sens. 2020, 12(22), 3776; https://doi.org/10.3390/rs12223776.

二、项目介绍

评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_养乐多_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值