python:评估分类模型性能的常用指标(acc、auc、roc)

23 篇文章 47 订阅 ¥79.90 ¥99.00
39 篇文章 14 订阅
本文介绍了使用Python计算分类模型性能的常用指标:准确率(ACC)、AUC和ROC曲线。通过scikit-learn库的accuracy_score、roc_auc_score和roc_curve函数,可以分别计算ACC、AUC并绘制ROC曲线,帮助评估模型在不同类别和阈值下的表现。
摘要由CSDN通过智能技术生成

本文记录了评估分类模型性能的常用指标ACC、AUC、ROC曲线的计算方法和代码。代码使用python实现。

简介

ACC(Accuracy)是模型的准确率,即模型正确预测的样本数占总样本数的比例。ACC 可以用来评估模型在整体上的分类效果,但它不能很好地反映模型在不同类别上的表现差异。

AUC(Area Under the Curve)是 ROC 曲线下的面积,可以用来评估模型在不同阈值下的分类效果。AUC 的取值范围在 0.5 到 1 之间,值越大表示模型性能越好。当 AUC = 0.5 时,表示模型预测效果与随机猜测一样;当 AUC = 1 时,表示模型完全正确地区分了正负样本。

ROC(Receiver Operating Characteristic)曲线是一种常用的评估分类模型性能的工具。ROC 曲线的横轴表示假正例率(False Positive Rate),即负样本被错误地预测为正样本的比例;纵轴表示真正例率(True Positive Rate),即正样本被正确地预测为正样本的比例。ROC 曲线越接近左上角,表示模型性能越好;曲线越接近对角线,则表示模型性能越差。

总之,ACC、AUC 和 ROC 都是用于评估分类模型性能的指标,不同的指标可以从不同的角度来评估模型的性能,使用时需要根据具体的问题和需求进行选择。

在这里插入图片描述


文章目录

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_养乐多_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值