无迹卡尔曼滤波算法——基本原理(附MATLAB程序)

       无迹卡尔曼滤波(Unscented Kalman Filter, UKF)是一种用于处理非线性系统状态估计的递归滤波器。相比于扩展卡尔曼滤波(EKF),UKF在处理非线性问题时通常表现得更为精确和稳健。它通过一种称为“无迹变换”(Unscented Transform, UT)的技术来近似非线性函数,从而避免了对雅可比矩阵的计算,这使得它对非线性系统有更好的适应性。

一、无迹卡尔曼滤波算法的基本原理

       UKF的核心思想是通过选择一组称为“sigma点”的离散点来近似系统的状态分布。通过对这些sigma点进行非线性变换,然后计算这些点变换后的均值和协方差,从而得到对系统状态的估计。

主要步骤

1. 生成sigma点

       对于状态向量和协方差矩阵 ,生成一组sigma点。这些sigma点通过以下公式计算:

        其中,λ 是缩放参数,n 是状态维度。

2.预测sigma点

将生成的sigma点通过状态转移函数进行非线性变换,得到预测的sigma点。

3. 计算预测均值和协方差

      根据预测的sigma点计算预测状态的均值和协方差:

       其中, 是sigma点的权重,Q是过程噪声协方差矩阵。

4. 预测测量

       将预测的sigma点通过测量函数 进行非线性变换,得到预测的测量sigma点:

5. 计算测量均值和协方差

        根据预测的测量sigma点计算测量的均值和协方差:

       其中,是测量协方差矩阵,​ 是状态与测量的交叉协方差矩阵,R是测量噪声协方差矩阵。

6. 更新

      计算卡尔曼增益并更新状态估计和协方差矩阵:

     其中, 是实际测量值。

二、无迹卡尔曼滤波的优点

  1. 处理非线性:UKF比EKF能更好地处理强非线性系统,因为它避免了线性化误差。
  2. 不需要计算雅可比矩阵:无迹卡尔曼滤波直接通过sigma点近似非线性函数,简化了计算。
  3. 稳定性:在处理高非线性问题时比扩展卡尔曼滤波器更稳定。

三、应用场景

  • 无人驾驶汽车:实时估计车辆状态和环境感知。
  • 机器人控制:复杂机器人运动和位置估计。
  • 飞行控制:航天器和飞行器的状态估计与导航。
  • 金融数据分析:用于预测和风险评估。

     无迹卡尔曼滤波器由于其处理非线性问题的能力和较高的估计精度,在许多实际应用中都具有很大的优势。

四、MATLAB仿真程序

1. 设置系统模型

% 系统参数
n = 4; % 状态维度
m = 2; % 观测维度

% 初始状态
x0 = [0; 0; 1; 1];
P0 = eye(n); % 状态协方差矩阵的初始值

% 系统噪声
Q = 0.1 * eye(n); % 过程噪声协方差
R = 0.1 * eye(m); % 观测噪声协方差

% 观测函数
h = @(x) [x(1)^2; x(2)^2]; % 非线性观测函数

% 状态转移函数
f = @(x) [x(1) + x(3); x(2) + x(4); x(3); x(4)]; % 非线性状态转移函数

% 时间参数
dt = 0.1; % 时间步长
T = 10; % 仿真总时间
time = 0:dt:T; % 时间向量

2. 无迹卡尔曼滤波器实现

% UKF参数设置
alpha = 1e-3; % 控制sigma点的分布
beta = 2; % 先验知识参数
kappa = 0; % 可选参数,通常设为0

lambda = alpha^2 * (n + kappa) - n; % 计算lambda
c = n + lambda; % 权重常数

% 权重
Wm = [lambda / c; repmat(1 / (2 * c), 2 * n, 1)]; % 预测权重
Wc = [lambda / c + (1 - alpha^2 + beta); repmat(1 / (2 * c), 2 * n, 1)]; % 更新权重

% 初始化UKF
x = x0; % 初始状态
P = P0; % 初始协方差矩阵

% 记录数据
X_est = zeros(n, length(time)); % 状态估计
X_true = zeros(n, length(time)); % 实际状态
Y_meas = zeros(m, length(time)); % 观测数据

% 仿真循环
for t = 1:length(time)
    % 生成sigma点
    sqrt_P = sqrtm(P); % 协方差矩阵的平方根
    X_sig = [x, x + sqrt_P, x - sqrt_P]; % sigma点

    % 状态传播
    X_sig_pred = zeros(n, 2*n + 1);
    for i = 1:2*n + 1
        X_sig_pred(:,i) = f(X_sig(:,i));
    end

    % 计算预测均值和协方差
    x_pred = X_sig_pred * Wm;
    P_pred = Q;
    for i = 1:2*n + 1
        P_pred = P_pred + Wc(i) * (X_sig_pred(:,i) - x_pred) * (X_sig_pred(:,i) - x_pred)';
    end

    % 生成观测sigma点
    Y_sig_pred = zeros(m, 2*n + 1);
    for i = 1:2*n + 1
        Y_sig_pred(:,i) = h(X_sig_pred(:,i));
    end

    % 计算观测均值和协方差
    y_pred = Y_sig_pred * Wm;
    P_yy = R;
    P_xy = zeros(n, m);
    for i = 1:2*n + 1
        P_yy = P_yy + Wc(i) * (Y_sig_pred(:,i) - y_pred) * (Y_sig_pred(:,i) - y_pred)';
        P_xy = P_xy + Wc(i) * (X_sig_pred(:,i) - x_pred) * (Y_sig_pred(:,i) - y_pred)';
    end

    % 计算卡尔曼增益
    K = P_xy / P_yy;

    % 更新状态和协方差矩阵
    z = h(x) + sqrt(R) * randn(m,1); % 模拟观测
    x = x_pred + K * (z - y_pred);
    P = P_pred - K * P_yy * K';

    % 记录数据
    X_est(:,t) = x;
    X_true(:,t) = f(x) + sqrt(Q) * randn(n,1); % 模拟真实状态
    Y_meas(:,t) = h(X_true(:,t)) + sqrt(R) * randn(m,1); % 模拟观测
end

3. 绘制结果

% 绘制状态估计与真实状态
figure;
subplot(2,1,1);
plot(time, X_true(1,:), 'g', time, X_est(1,:), 'b--');
legend('True Position X', 'Estimated Position X');
xlabel('Time (s)');
ylabel('Position X');

subplot(2,1,2);
plot(time, X_true(2,:), 'g', time, X_est(2,:), 'b--');
legend('True Position Y', 'Estimated Position Y');
xlabel('Time (s)');
ylabel('Position Y');

说明

  1. 系统模型

    • 定义了非线性的状态转移函数和观测函数。
    • 设置了系统噪声和观测噪声的协方差矩阵。
  2. UKF参数设置

    • 选择适当的参数 alphabetakappa
    • 计算sigma点的权重和lambda值。
  3. 无迹卡尔曼滤波器实现

    • 生成sigma点。
    • 传播状态和观测,计算预测均值和协方差。
    • 更新状态和协方差矩阵。
  4. 结果绘制

    • 比较真实状态与估计状态的时间序列数据。

这个示例程序展示了如何在MATLAB中实现无迹卡尔曼滤波算法,处理非线性系统的状态估计。实际应用中,可以根据具体系统和需求调整参数和模型。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

leon625

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值