无迹卡尔曼滤波(Unscented Kalman Filter, UKF)是一种用于处理非线性系统状态估计的递归滤波器。相比于扩展卡尔曼滤波(EKF),UKF在处理非线性问题时通常表现得更为精确和稳健。它通过一种称为“无迹变换”(Unscented Transform, UT)的技术来近似非线性函数,从而避免了对雅可比矩阵的计算,这使得它对非线性系统有更好的适应性。
一、无迹卡尔曼滤波算法的基本原理
UKF的核心思想是通过选择一组称为“sigma点”的离散点来近似系统的状态分布。通过对这些sigma点进行非线性变换,然后计算这些点变换后的均值和协方差,从而得到对系统状态的估计。
主要步骤
1. 生成sigma点
对于状态向量和协方差矩阵
,生成一组sigma点。这些sigma点通过以下公式计算:
其中,λ 是缩放参数,n 是状态维度。
2.预测sigma点
将生成的sigma点通过状态转移函数进行非线性变换,得到预测的sigma点。
3. 计算预测均值和协方差
根据预测的sigma点计算预测状态的均值和协方差:
其中, 和
是sigma点的权重,Q是过程噪声协方差矩阵。
4. 预测测量
将预测的sigma点通过测量函数 进行非线性变换,得到预测的测量sigma点:
5. 计算测量均值和协方差
根据预测的测量sigma点计算测量的均值和协方差:
其中,是测量协方差矩阵,
是状态与测量的交叉协方差矩阵,R是测量噪声协方差矩阵。
6. 更新
计算卡尔曼增益并更新状态估计和协方差矩阵:
其中, 是实际测量值。
二、无迹卡尔曼滤波的优点
- 处理非线性:UKF比EKF能更好地处理强非线性系统,因为它避免了线性化误差。
- 不需要计算雅可比矩阵:无迹卡尔曼滤波直接通过sigma点近似非线性函数,简化了计算。
- 稳定性:在处理高非线性问题时比扩展卡尔曼滤波器更稳定。
三、应用场景
- 无人驾驶汽车:实时估计车辆状态和环境感知。
- 机器人控制:复杂机器人运动和位置估计。
- 飞行控制:航天器和飞行器的状态估计与导航。
- 金融数据分析:用于预测和风险评估。
无迹卡尔曼滤波器由于其处理非线性问题的能力和较高的估计精度,在许多实际应用中都具有很大的优势。
四、MATLAB仿真程序
1. 设置系统模型
% 系统参数
n = 4; % 状态维度
m = 2; % 观测维度
% 初始状态
x0 = [0; 0; 1; 1];
P0 = eye(n); % 状态协方差矩阵的初始值
% 系统噪声
Q = 0.1 * eye(n); % 过程噪声协方差
R = 0.1 * eye(m); % 观测噪声协方差
% 观测函数
h = @(x) [x(1)^2; x(2)^2]; % 非线性观测函数
% 状态转移函数
f = @(x) [x(1) + x(3); x(2) + x(4); x(3); x(4)]; % 非线性状态转移函数
% 时间参数
dt = 0.1; % 时间步长
T = 10; % 仿真总时间
time = 0:dt:T; % 时间向量
2. 无迹卡尔曼滤波器实现
% UKF参数设置
alpha = 1e-3; % 控制sigma点的分布
beta = 2; % 先验知识参数
kappa = 0; % 可选参数,通常设为0
lambda = alpha^2 * (n + kappa) - n; % 计算lambda
c = n + lambda; % 权重常数
% 权重
Wm = [lambda / c; repmat(1 / (2 * c), 2 * n, 1)]; % 预测权重
Wc = [lambda / c + (1 - alpha^2 + beta); repmat(1 / (2 * c), 2 * n, 1)]; % 更新权重
% 初始化UKF
x = x0; % 初始状态
P = P0; % 初始协方差矩阵
% 记录数据
X_est = zeros(n, length(time)); % 状态估计
X_true = zeros(n, length(time)); % 实际状态
Y_meas = zeros(m, length(time)); % 观测数据
% 仿真循环
for t = 1:length(time)
% 生成sigma点
sqrt_P = sqrtm(P); % 协方差矩阵的平方根
X_sig = [x, x + sqrt_P, x - sqrt_P]; % sigma点
% 状态传播
X_sig_pred = zeros(n, 2*n + 1);
for i = 1:2*n + 1
X_sig_pred(:,i) = f(X_sig(:,i));
end
% 计算预测均值和协方差
x_pred = X_sig_pred * Wm;
P_pred = Q;
for i = 1:2*n + 1
P_pred = P_pred + Wc(i) * (X_sig_pred(:,i) - x_pred) * (X_sig_pred(:,i) - x_pred)';
end
% 生成观测sigma点
Y_sig_pred = zeros(m, 2*n + 1);
for i = 1:2*n + 1
Y_sig_pred(:,i) = h(X_sig_pred(:,i));
end
% 计算观测均值和协方差
y_pred = Y_sig_pred * Wm;
P_yy = R;
P_xy = zeros(n, m);
for i = 1:2*n + 1
P_yy = P_yy + Wc(i) * (Y_sig_pred(:,i) - y_pred) * (Y_sig_pred(:,i) - y_pred)';
P_xy = P_xy + Wc(i) * (X_sig_pred(:,i) - x_pred) * (Y_sig_pred(:,i) - y_pred)';
end
% 计算卡尔曼增益
K = P_xy / P_yy;
% 更新状态和协方差矩阵
z = h(x) + sqrt(R) * randn(m,1); % 模拟观测
x = x_pred + K * (z - y_pred);
P = P_pred - K * P_yy * K';
% 记录数据
X_est(:,t) = x;
X_true(:,t) = f(x) + sqrt(Q) * randn(n,1); % 模拟真实状态
Y_meas(:,t) = h(X_true(:,t)) + sqrt(R) * randn(m,1); % 模拟观测
end
3. 绘制结果
% 绘制状态估计与真实状态
figure;
subplot(2,1,1);
plot(time, X_true(1,:), 'g', time, X_est(1,:), 'b--');
legend('True Position X', 'Estimated Position X');
xlabel('Time (s)');
ylabel('Position X');
subplot(2,1,2);
plot(time, X_true(2,:), 'g', time, X_est(2,:), 'b--');
legend('True Position Y', 'Estimated Position Y');
xlabel('Time (s)');
ylabel('Position Y');
说明
-
系统模型:
- 定义了非线性的状态转移函数和观测函数。
- 设置了系统噪声和观测噪声的协方差矩阵。
-
UKF参数设置:
- 选择适当的参数
alpha
、beta
和kappa
。 - 计算sigma点的权重和lambda值。
- 选择适当的参数
-
无迹卡尔曼滤波器实现:
- 生成sigma点。
- 传播状态和观测,计算预测均值和协方差。
- 更新状态和协方差矩阵。
-
结果绘制:
- 比较真实状态与估计状态的时间序列数据。
这个示例程序展示了如何在MATLAB中实现无迹卡尔曼滤波算法,处理非线性系统的状态估计。实际应用中,可以根据具体系统和需求调整参数和模型。