(笔记整合)回溯算法

一、如何理解“回溯算法”?

在我们的一生中,会遇到很多重要的岔路口。在岔路口上,每个选择都会影响我们今后的人生。有的人在每个岔路口都能做出最正确的选择,最后生活、事业都达到了一个很高的高度;而有的人一路选错,最后碌碌无为。如果人生可以量化,那如何才能在岔路口做出最正确的选择,让自己的人生“最优”呢?

可以借助前面学过的贪心算法,在每次面对岔路口的时候,都做出看起来最优的选择,期望这一组选择可以使得我们的人生达到“最优”。但是贪心算法并不一定能得到最优解。

回溯的处理思想,有点类似枚举搜索。枚举所有的解,找到满足期望的解。为了有规律地枚举所有可能的解,避免遗漏和重复,把问题求解的过程分为多个阶段。每个阶段都会面对一个岔路口,先随意选一条路走,当发现这条路走不通的时候(不符合期望的解),就回退到上一个岔路口,另选一种走法继续走。

二、回溯算法的经典应用

1.八皇后问题
有一个8x8的棋盘,希望往里放8个棋子(皇后),每个棋子所在的行、列、对角线都不能有另一个棋子。你可以看我画的图,第一幅图是满足条件的一种方法,第二幅图是不满足条件的。八皇后问题就是期望找到所有满足这种要求的放棋子方式。
在这里插入图片描述
把这个问题划分成8个阶段,依次将8个棋子放到第一行、第二行、第三行……第八行。在放置的过程中,我们不停地检查当前的方法,是否满足要求。如果满足,则跳到下一行继续放置棋子;如果不满足,那就再换一种方法,继续尝试。

public class QueensOf8 {
    private int[] result = new int[8];//全局或成员变量,下标表示行,值表示queen存储在哪一列

    public void cal8queens(int row) { // 调用方式:cal8queens(0);
        if (row == 8) { // 8个棋子都放置好了,打印结果
            printQueens(result);
            return; // 8行棋子都放好了,已经没法再往下递归了,所以就return
        }
        for (int column = 0; column < 8; ++column) { // 每一行都有8中放法
            if (isOk(row, column)) { // 有些放法不满足要求
                result[row] = column; // 第row行的棋子放到了column列
                cal8queens(row + 1); // 考察下一行
            }
        }
    }

    private boolean isOk(int row, int column) {//判断row行column列放置是否合适
        int leftup = column - 1, rightup = column + 1;
        for (int i = row - 1; i >= 0; --i) { // 逐行往上考察每一行
            if (result[i] == column) {
                return false; // 第i行的column列有棋子吗?
            }
            if (leftup >= 0) { // 考察左上对角线:第i行leftup列有棋子吗?
                if (result[i] == leftup) { return false; }
            }
            if (rightup < 8) { // 考察右上对角线:第i行rightup列有棋子吗?
                if (result[i] == rightup) { return false; }
            }
            --leftup;
            ++rightup;
        }
        return true;
    }

    private void printQueens(int[] result) { // 打印出一个二维矩阵
        for (int row = 0; row < 8; ++row) {
            for (int column = 0; column < 8; ++column) {
                if (result[row] == column) { System.out.print("Q "); } else { System.out.print("* "); }
            }
            System.out.println();
        }
        System.out.println();
    }
}

2.0-1背包
0-1背包是非常经典的算法问题,很多场景都可以抽象成这个问题模型。这个问题的经典解法是动态规划,不过还有一种简单但没有那么高效的解法,那就是回溯算法。

0-1背包问题有很多变体,里介绍一种比较基础的。有一个背包,背包总的承载重量是Wkg。现在有n个物品,每个物品的重量不等,并且不可分割。现在期望选择几件物品,装载到背包中。在不超过背包所能装载重量的前提下,如何让背包中物品的总重量最大?
实际上,背包问题在贪心算法已经讲过一个,不过那里讲的物品是可以分割的,我可以装某个物品的一部分到背包里面。今天的这个背包问题,物品是不可分割的,要么装要么不装,所以叫0-1背包问题。显然,这个问题已经无法通过贪心算法来解决了。现在来看看用回溯算法如何来解决。

对于每个物品来说,都有两种选择,装进背包或者不装进背包。对于n个物品来说,总的装法就有2n种,去掉总重量超过Wkg的,从剩下的装法中选择总量最接近Wkg的。不过,我们如何才能不重复地穷举出这2n种装法呢?
这里就可以用回溯的方法。可以把物品依次排列,整个问题就分解为了n个阶段,每个阶段对应一个物品怎么选择。先对第一个物品进行处理,选择装进去或者不装进去,然后再递归地处理剩下的物品。

public class ZOPakage {
    public int maxW = Integer.MIN_VALUE; //存储背包中物品总重量的最大值

    // cw表示当前已经装进去的物品的重量和;i表示考察到哪个物品了;
    // w背包重量;items表示每个物品的重量;n表示物品个数
    // 假设背包可承受重量100,物品个数10,物品重量存储在数组a中,那可以这样调用函数:
    // f(0, 0, a, 10, 100)
    public void f(int i, int cw, int[] items, int n, int w) {
        if (cw == w || i == n) { // cw==w表示装满了;i==n表示已经考察完所有的物品
            if (cw > maxW) { maxW = cw; }
            return;
        }
        f(i + 1, cw, items, n, w);
        if (cw + items[i] <= w) {// 已经超过可以背包承受的重量的时候,就不要再装了
            f(i + 1, cw + items[i], items, n, w);
        }
    }
}

总结:回溯算法本质上就是枚举,优点在于其类似于摸着石头过河的查找策略,且可以通过剪枝少走冤枉路。它可能适合应用于缺乏规律,或我们还不了解其规律的搜索场景中。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值