综述:运动目标跟踪算法

本文总结了运动目标跟踪算法,包括传统方法如光流法、Kalman滤波、核方法(Meanshift、Camshift)以及相关滤波算法(MOSSE、KCF)。光流法依赖像素关系,但实时性差;Kalman滤波适用于线性系统;核方法通过搜索最优点跟踪,而相关滤波将计算转移到频域,提高了速度。近年来,深度学习方法因其特征提取能力而被应用于目标跟踪,但面临实时性和训练数据不足的问题。
摘要由CSDN通过智能技术生成

运动目标跟踪算法总结

 1  传统的目标跟踪算法

运动目标跟踪,首先对目标进行有效地表达。然后在接下来的视频序列的每一帧中找到相似度与目 标最大的区域,从而确定目标在当前帧中的位置。 早期的生成式方法主要有两种思路: 1) 依赖于目标外观模型。通过对目标外观模型进行建模,然后在之后的帧中找到目标。 例如: 光流法。2) 不依赖于目标外观模型。选定目标建立目标模型,然后在视频中搜索 找到目标模型。例如: Meanshift。

1.1  光流法

光流法 (Lucas-Kanade) 的概念首先在 1950 年提出,它是针对外观模型对视频序列中的像素进行操作。通过利用视频序列在相邻帧之间的像素关系,寻找像素的位移变化来判断目标的运动状态,实现对运动目标的跟踪。 但是,光流法适用的范围较小,需要满足三种假设: 图像的光照强度保持不变; 空间一致性,即每个像素在不同帧中相邻点的位置不变,这样便于求得最终的运动矢量; 时间连续。光流法适用于目标运动相对于帧率是缓慢的,也就是两帧之间的目标位移不能太大。

随后,人们开始在光流法的基础上进行了改进。 将 Harris 角点检测与光流法相结合,将光流法中的像素换成 Harris 特征点进行目标跟踪,这样减少了跟踪像素的数量,使得算法的复杂度降低,处理速度加快。同时,相比于普通的像素,Harris角点对目标的描述更好,具有很强的鲁棒性。

光流法的缺点:它对视频中所有的像素进行计算,实时性差。采用一定的缩小计算范围的算法,具有重大意义。其中常见的算法有 Kalman 滤波、粒子滤波等。

1.2  Kalman 滤波

Kalman 滤波是一种能够对目标的位置进行有效预测的算法。 它建立状态方程,将观测数据进行状态输入,对方程参数进行优化。 通过对前 n 帧数据的输入,可以有效地预测第 n 帧中目标的位置,Kalman 估计也叫最优估计。 因此,在目标跟踪过程中,当目标出现遮挡或者消失时,加入 Kalman 滤波 可以有效地解决这种问题。

Kalman 滤波缺点是只适合于线性系统,适用范围小。针对 Kalman 滤波适用范围小这一问题,人们提出了粒子滤波的方法。粒子滤波的思想源于蒙特卡洛思想,它利用特征点表示概率模型。这种表示方法可以在非线性空间上进行计算,其思想是从后验概率中选取特征表达其分布。最近,人们也提出了改进平方根容积卡尔

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值