似然函数推导损失函数
之前在机器学习算法的学习中一直疑惑,为什么cost function通常都为
起初认为是绝对值不好计算因而换成平方项,但是这个 12 1 2 解释不通(虽然它并不影响),而且为什么不是其余偶数次项,于是很好奇这个是怎么来的。
后面听了吴恩达老师的课,也算是解答了一些疑惑。
我们设模型为 hθ(x) h θ ( x ) ,有以下假设:
- y=hθ(x)+ϵ y = h θ ( x ) + ϵ
- ϵ(i) ϵ ( i ) ~ N(0,δ2) N ( 0 , δ 2 ) , ϵ(i) ϵ ( i ) 独立同分布
即y由模型拟合以及随机扰动构成,而由中心极限定理,我们假设随机扰动 ϵ ϵ 服从均值为0方差为 δ2 δ 2 的正态分布。
移项可得:
由正态分布密度函数,对于某一样本点 y(i) y ( i ) , x(i) x ( i ) ,有: