损失函数的推导

本文介绍了损失函数的两种推导方法:一是通过似然函数,利用高斯分布假设推导出均方误差损失;二是从信息论角度,通过信息量、熵和相对熵(KL散度)来定义损失,揭示模型与真实分布的差异。交叉熵作为损失函数在机器学习中的应用也被讨论。
摘要由CSDN通过智能技术生成

似然函数推导损失函数

之前在机器学习算法的学习中一直疑惑,为什么cost function通常都为

J(θ)=12(yhθ(x))2 J ( θ ) = 1 2 ( y − h θ ( x ) ) 2

起初认为是绝对值不好计算因而换成平方项,但是这个 12 1 2 解释不通(虽然它并不影响),而且为什么不是其余偶数次项,于是很好奇这个是怎么来的。
后面听了吴恩达老师的课,也算是解答了一些疑惑。


我们设模型为 hθ(x) h θ ( x ) ,有以下假设:

  1. y=hθ(x)+ϵ y = h θ ( x ) + ϵ
  2. ϵ(i) ϵ ( i ) ~ N(0,δ2) N ( 0 , δ 2 ) , ϵ(i) ϵ ( i ) 独立同分布

即y由模型拟合以及随机扰动构成,而由中心极限定理,我们假设随机扰动 ϵ ϵ 服从均值为0方差为 δ2 δ 2 的正态分布。
移项可得:

yhθ(x)=ϵ y − h θ ( x ) = ϵ

由正态分布密度函数,对于某一样本点 y(i) y ( i ) , x(i) x ( i ) ,有:
P(y(i)|x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值