最小二乘法的SVD实现

本文深入探讨了SLAM(即时定位与地图构建)中SVD(奇异值分解)在最小二乘法中的应用,包括计算HomographyMatrix、FundamentalMatrix及三角化等关键步骤。通过解析齐次方程组,利用SVD求解最小二乘问题,为理解SLAM优化过程提供理论依据。
摘要由CSDN通过智能技术生成

0.SLAM中SVD进行最小二乘的应用

在SLAM应用中,计算Homography Matrix,Fundamental Matrix,以及做三角化(Triangulation)时,都会用到最小二乘

 

1.背景

对一堆观测到的带噪声的数据进行最小二乘拟合

 

2.理论模型

 

3.优化目标

 

4.优化过程

 

5.工程实现

 

6.对齐次方程,利用SVD做最小二乘最优解的证明(感谢@刘毅 的推导)

 

7.其他非齐次方程组做最小二乘的方法

 

8.不同的最小二乘方法的讨论

 

9.本篇文章的理论出处

上述推导并不复杂,但是如果你想明白最小二乘优化的来龙去脉,推荐你看《Multiple View Geometry in Computer Vision》中的附录5:Least-squares Minimization

 

10.致谢

感谢 @刘毅 关于齐次方程组的SVD做最小二乘的的推导证明。

感谢 @黄山 关于矩阵条件数的介绍,以及一些相关的证明推导。

感谢 @泡泡机器人 的其他成员的激烈讨论。

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值