2020华为杯E题——基于灰色预测的大雾能见度预测模型(附代码)

该博客围绕2020研究生数学建模E题展开,因题目数据少,选择灰色预测模型进行大雾能见度预测。介绍了灰色预测模型的定义、目的和GM(1,1)模型预测原理,给出Matlab算法实现。还评估了模型特点与不足,最后附上其他解题模型及文章链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、E题赛题

2020研究生数学建模赛题链接:https://download.csdn.net/download/qq_35759272/13028941

二、赛题分析

通过高速公路截图,直观观察看不出大雾浓度或能见度的明显变化,其次,由于题目给出的数据较少,只给出早晨 6:30 到 7:39 的截图,所以类似小波神经网
络的预测方案不再适用,选择 灰色预测模型较为可靠

三、基于灰色预测的大雾能见度预测模型

3.1灰色预测模型的定义

灰色模型(Grey Model,简称GM模型)一般表达方式为GM(n,x)模型,其含义是:用n阶微分方程对x个变量建立模型。

3.2 灰色预测模型的目的

通过把分散在时间轴上的离散数据看成一组连续变化的序列,采用累加和累减的方式,将灰色系统中的未知因素弱化,强化已知因素的影响程度,最后构建一个以时间为变量的连续微分方程,通过数学方法确定方程中的参数,从而实现预测目的。

GM(1,1)模型的预测原理

对某一数据序列用累加的方式生成一组趋势明显的新数据序列,按照新的数据序列的增长趋势建立模型进行预测,然后再用累减的方法进行逆向计算,恢复原始数据序列,进而得到预测结果。

3.3 Matlab算法实现

function []=greymodel(y)
% 本程序主要用来计算根据灰色理论建立的模型的预测值。
% 应用的数学模型是 GM(1,1)% 原始数据的处理方法是一次累加法。
y=input('请输入数据 ');
n=length(y);
yy=ones(n,1);
yy(1)=y(1);
for i=2:n
    yy(i)=yy(i-1)+y(i);
end
B=ones(n-1,2);
for i=1:(n-1)
    B(i,1)=-(yy(i)+yy(i+1))/2;
    B(i,2)=1;
end
BT=B';
for j=1:n-1
    YN(j)=y(j+1);
end
YN=YN';
A=inv(BT*B)*BT*YN;
a=A(1);
u=A(2);
t=u/a;
i=1:n+400;
yys(i+1)=(y(1)-t).*exp(-a.*i)+t;
yys(1)=y(1);
for j=n+400:-1:2
    ys(j)=yys(j)-yys(j-1);
end
x=1:n;
xs=2:n+400;
yn=ys(2:n+400);
plot(x,y,'^r',xs,yn,'*-b');
title('基于灰色预测模型的机场能见度变化');
det=0;

sum1=0;
sumpe=0;
for i=1:n
    sumpe=sumpe+y(i);
end
pe=sumpe/n;
for i=1:n;
    sum1=sum1+(y(i)-pe).^2;
end
s1=sqrt(sum1/n);
sumce=0;
for i=2:n
    sumce=sumce+(y(i)-yn(i));
end
ce=sumce/(n-1);
sum2=0;
for i=2:n;
    sum2=sum2+(y(i)-yn(i)-ce).^2;
end
s2=sqrt(sum2/(n-1));
c=(s2)/(s1);

disp(['预测后面第360张图的能见度为',num2str(ys(n+360))]);


四 模型评估

4.1灰色系统预测模型的特点:

(1)无需大量数据样本
(2)短期预测效果好
(3)运算过程简单。

4.2灰色系统预测模型的不足:

对非线性数据样本预测效果差。

附:

第二题解题——基于AlexNet深度网络的能见度估计模型
解题文章链接:2020研究生数学建模E题–AlexNet深度网络解法(大雾能见度估计与预测)(含代码)
第三题解题——基于辅助车道线的大雾能见度估计模型
(1)对于机场视频可以采用——基于暗通道优先算法的能见度估计模型
文章链接:2020华为杯E题–基于暗通道优先算法的能见度估计模型(附代码)
(2)对于高速公路视频截图数据采用——基于辅助车道线的大雾能见度估计与预测模型
文章链接:2020华为杯E题–基于辅助车道线的大雾能见度估计与预测(附代码)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

凌青羽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值