ASFF:Learning Spatial Fusion for Single-Shot Object Detection

一、论文核心

在特征金字塔(FPN)中加入自适应结构特征融合模块,使其自适应地学习每个尺度特征图的融合空间权重

二、网络结构

其代码实现如下:

def add_conv(in_ch, out_ch, ksize, stride, leaky=True):
    """
    Add a conv2d / batchnorm / leaky ReLU block.
    Args:
        in_ch (int): number of input channels of the convolution layer.
        out_ch (int): number of output channels of the convolution layer.
        ksize (int): kernel size of the convolution layer.
        stride (int): stride of the convolution layer.
    Returns:
        stage (Sequential) : Sequential layers composing a convolution block.
    """
    stage = nn.Sequential()
    pad = (ksize - 1) // 2
    stage.add_module('conv', nn.Conv2d(in_channels=in_ch,
                                       out_channels=out_ch, kernel_size=ksize, stride=stride,
                                       padding=pad, bias=False))
    stage.add_module('batch_norm', nn.BatchNorm2d(out_ch))
    if leaky:
        stage.add_module('leaky', nn.LeakyReLU(0.1))
    else:
        stage.add_module('relu6', nn.ReLU6(inplace=True))
    return stage


class ASFF(nn.Module):
    def __init__(self, level, rfb=False, vis=False):
        super(ASFF, self).__init__()
        self.level = level
        self.dim = [512, 256, 256]
        self.inter_dim = self.dim[self.level]
        if level==0:
            self.stride_level_1 = add_conv(256, self.inter_dim, 3, 2)
            self.stride_level_2 = add_conv(256, self.inter_dim, 3, 2)
            self.expand = add_conv(self.inter_dim, 1024, 3, 1)
        elif level==1:
            self.compress_level_0 = add_conv(512, self.inter_dim, 1, 1)
            self.stride_level_2 = add_conv(256, self.inter_dim, 3, 2)
            self.expand = add_conv(self.inter_dim, 512, 3, 1)
        elif level==2:
            self.compress_level_0 = add_conv(512, self.inter_dim, 1, 1)
            self.expand = add_conv(self.inter_dim, 256, 3, 1)

        compress_c = 8 if rfb else 16  #when adding rfb, we use half number of channels to save memory

        self.weight_level_0 = add_conv(self.inter_dim, compress_c, 1, 1)
        self.weight_level_1 = add_conv(self.inter_dim, compress_c, 1, 1)
        self.weight_level_2 = add_conv(self.inter_dim, compress_c, 1, 1)

        self.weight_levels = nn.Conv2d(compress_c*3, 3, kernel_size=1, stride=1, padding=0)
        self.vis= vis


    def forward(self, x_level_0, x_level_1, x_level_2):
        if self.level==0:
            level_0_resized = x_level_0
            level_1_resized = self.stride_level_1(x_level_1)

            level_2_downsampled_inter =F.max_pool2d(x_level_2, 3, stride=2, padding=1)
            level_2_resized = self.stride_level_2(level_2_downsampled_inter)

        elif self.level==1:
            level_0_compressed = self.compress_level_0(x_level_0)
            level_0_resized =F.interpolate(level_0_compressed, scale_factor=2, mode='nearest')
            level_1_resized =x_level_1
            level_2_resized =self.stride_level_2(x_level_2)
        elif self.level==2:
            level_0_compressed = self.compress_level_0(x_level_0)
            level_0_resized =F.interpolate(level_0_compressed, scale_factor=4, mode='nearest')
            level_1_resized =F.interpolate(x_level_1, scale_factor=2, mode='nearest')
            level_2_resized =x_level_2

        level_0_weight_v = self.weight_level_0(level_0_resized)
        level_1_weight_v = self.weight_level_1(level_1_resized)
        level_2_weight_v = self.weight_level_2(level_2_resized)
        levels_weight_v = torch.cat((level_0_weight_v, level_1_weight_v, level_2_weight_v),1)
        levels_weight = self.weight_levels(levels_weight_v)
        levels_weight = F.softmax(levels_weight, dim=1)

        fused_out_reduced = level_0_resized * levels_weight[:,0:1,:,:]+\
                            level_1_resized * levels_weight[:,1:2,:,:]+\
                            level_2_resized * levels_weight[:,2:,:,:]

        out = self.expand(fused_out_reduced)

        if self.vis:
            return out, levels_weight, fused_out_reduced.sum(dim=1)
        else:
            return out

三、参考内容

ASFF:Learning Spatial Fusion for Single-Shot Object Detection

GitHub - GOATmessi8/ASFF: yolov3 with mobilenet v2 and ASFF

### ASFF YOLOv8 实现教程文档下载 对于希望了解如何实现ASFF-YOLOv8的开发者而言,可以遵循特定的技术资料和指南来完成这一过程。这些资源不仅提供了理论上的理解,还包含了实际操作中的具体指导。 #### 资源获取途径 1. **官方文档与论文** 官方文档通常是最权威的信息来源之一。尽管YOLO系列模型由Ultralytics维护和支持,但对于ASFF(自适应特征融合模块),建议查阅原始作者发布的材料或相关研究论文[^1]。 2. **GitHub项目库** GitHub是一个极佳的地方去寻找开源项目的实现细节。通过访问[GOATmessi8/ASFF](https://github.com/GOATmessi8/ASFF),可以获得关于如何将ASFF应用于不同版本YOLO的具体实例以及代码片段[^3]。 3. **社区论坛和技术博客** 社区平台如Stack Overflow、Reddit等经常有经验丰富的实践者分享个人见解;而一些专注于计算机视觉领域的博主也会撰写详细的教程文章介绍最新进展和技术应用案例。此外,在线课程网站也可能提供有关目标检测算法及其优化技巧的教学视频。 4. **实验环境搭建说明** 若要基于现有框架构建带有ASFF特性的YOLOv8,则需按照指定流程修改配置文件并调整训练脚本。例如,在`ultralytics`目录下创建新的Python脚本来定义模型架构,并指向正确的YAML配置文件路径以加载预设参数[^2]: ```python from ultralytics import YOLO model = YOLO(r'/projects/ultralytics/ultralytics/cfg/models/v8/yolov8_ASFF.yaml') model.train(batch=16) ``` 此段代码展示了怎样利用PyTorch生态系统的灵活性快速集成第三方组件到主流的目标检测解决方案之中。 #### 注意事项 当尝试引入外部特性至已有系统时,请务必注意兼容性和性能影响评估。确保所选方案能够有效提升原有功能而不破坏整体稳定性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值