论文笔记:Grouplens: An Open Architecture for Collaborative Filtering of Netnews

一、基本信息

论文题目:《Grouplens: An Open Architecture for Collaborative Filtering of Netnews 》

发表时间:CSCW 1994

论文作者及单位:

论文地址:https://dl.acm.org/citation.cfm?id=192905

 

二、摘要

   协同过滤可以帮助人们根据他人的意见做出选择。GroupLens是一个采用协同过滤的网络新闻系统,功能是帮助人们在大量可用文章中找到他们喜欢的文章。新闻阅读器客户端显示预测的分数,让用户在阅读文章后更容易对文章进行评分。评级服务器被称为Better Bit Bureaus,负责收集和传播评级。评级服务器根据启发式方法预测得分,其基本假设是过去达成一致的人可能会再次达成一致。用户可以通过以假名输入评分来保护自己的隐私,而不会降低评分预测的有效性。整个体系结构是开放的:新闻客户端和Better Bit Bureaus的替代软件可以独立开发,并且可以与我们开发的组件进行互操作。

 

三、论文主要内容与工作

这是在推荐系统发展早期发表的一篇文章,主要对Grouplens系统的架构、功能与所使用的协同过滤方法的原理进行了描述,还提出了推荐算法中存在的数据稀疏与冷启动问题,数据稀疏解释的比较详细,冷启动涉及了一些但没有给出正式的定义。

 

 

 

 

 

### 关于 FourierKAN-GCF 的详细介绍 FourierKAN-GCF 是一种基于傅里叶变换和 Kolmogorov-Arnold 表达定理的特征转换网络,旨在提升图协同过滤 (Graph Collaborative Filtering, GCF) 中的性能[^1]。该模型通过引入高效的特征转换机制,在处理大规模推荐系统的稀疏性和噪声方面表现出显著优势。 #### 方法概述 FourierKAN-GCF 结合了傅里叶分析与神经网络架构的设计理念,其核心在于利用傅里叶级数分解来捕捉高维空间中的复杂模式,并将其映射到低维表示中[^2]。这种方法不仅能够有效减少计算开销,还能够在保持表达能力的同时增强模型的泛化性能。 以下是 FourierKAN-GCF 的主要组成部分: 1. **傅里叶特征提取模块**: 借助傅里叶变换的能力,FourierKAN-GCF 能够将原始输入数据投影至频域,从而更好地分离信号的主要成分与次要成分。这一过程有助于降低噪声干扰并突出重要特征。 2. **Kolmogorov-Arnold 映射层**: 利用 Kolmogorov-Arnold 定理的核心思想,即任何连续函数都可以被近似为若干一元函数的组合形式,FourierKAN-GCF 构建了一种分而治之的学习策略。这种设计使得模型可以高效地逼近复杂的非线性关系。 3. **图卷积操作优化**: 针对传统 GCN 存在的信息传播瓶颈问题,FourierKAN-GCF 提出了改进版的消息传递机制,允许节点间更灵活地交换信息。这一步骤对于提高推荐质量至关重要。 #### 技术实现细节 为了便于实际应用,研究人员提供了完整的开源代码库以及详细的实验配置说明。以下是一个简化版本的 Python 实现框架: ```python import torch from torch_geometric.nn import MessagePassing class FourierKANLayer(MessagePassing): def __init__(self, input_dim, output_dim): super(FourierKANLayer, self).__init__() self.linear = torch.nn.Linear(input_dim, output_dim) def forward(self, x, edge_index): return self.propagate(edge_index=edge_index, size=None, x=x) def message(self, x_j): # 应用傅里叶变换或其他预定义的操作 fourier_transformed_x = ... # 自定义逻辑 return fourier_transformed_x # 使用示例 model = FourierKANLayer(input_dim=128, output_dim=64) output_features = model(x=input_data, edge_index=adjacency_matrix) ``` 上述代码片段展示了如何构建一个基础的 FourierKAN 层结构,并通过 PyTorch Geometric 工具包实现了消息传递功能。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值