洛谷 P4035 [JSOI2008]球形空间产生器【高斯消元】


题目:

传送门


题意:

n n n维的坐标系中给出 n + 1 n+1 n+1个点,有一性质即原点到这 n + 1 n+1 n+1的距离相等,问原点的坐标是多少


分析:

因为所有点到原点的距离相等,所有可以设 D D D表示距离, a i , j a_{i,j} ai,j表示第 i i i个点的第 j j j个坐标, x j x_j xj表示原点的第 j j j个坐标
那就有 ∑ j = 1 n ( a i , j − x j ) 2 = D ( i = 1 , 2 , … n ) \sum_{j=1}^n(a_{i,j}-x_j)^2=D(i=1,2,…n) j=1n(ai,jxj)2=D(i=1,2,n)
这样的式子肯定是毫无头绪的,所以我们尝试下将相邻的式子作差,从而消掉 D D D,得到
∑ j = 1 n a i , j 2 − a i + 1 , j 2 − 2 ∗ x j ∗ ( a i , j − a i + 1 , j ) = 0 \sum_{j=1}^na_{i,j}^2-a_{i+1,j}^2-2*x_j*(a_{i,j}-a_{i+1,j})=0 j=1nai,j2ai+1,j22xj(ai,jai+1,j)=0
移项可得
∑ j = 1 n 2 ∗ x j ∗ ( a i , j − a i + 1 , j ) = ∑ j = 1 n a i , j 2 − a i + 1 , j 2 \sum_{j=1}^n2*x_j*(a_{i,j}-a_{i+1,j})=\sum_{j=1}^na_{i,j}^2-a_{i+1,j}^2 j=1n2xj(ai,jai+1,j)=j=1nai,j2ai+1,j2
因为 a a a是我们已知的,所以就相当于求出每个满足方程的 x j x_j xj,用高斯消元就可以处理


代码:

#include<cstdio>
#include<string>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<cmath>
#include<vector>
#define LZX Mu
#define LL long long 
using namespace std;
inline LL read() {
    LL d=0,f=1;char s=getchar();
    while(s<'0'||s>'9'){if(s=='-')f=-1;s=getchar();}
    while(s>='0'&&s<='9'){d=d*10+s-'0';s=getchar();}
    return d*f;
}
double a[15][15],b[15],c[15][15],eps=1e-7;
int main()
{
	int n=read();
	for(int i=1;i<=n+1;i++) for(int j=1;j<=n;j++) scanf("%lf",&a[i][j]);
	for(int i=1;i<=n;i++)
	  for(int j=1;j<=n;j++)
	  {
	  	c[i][j]=2*(a[i][j]-a[i+1][j]);
	  	b[i]+=a[i][j]*a[i][j]-a[i+1][j]*a[i+1][j];
	  }
	for(int i=1;i<=n;i++)
	{
	  for(int j=i;j<=n;j++)
		if(fabs(c[j][i]>eps))
		{
			swap(c[i],c[j]);
			swap(b[i],b[j]);
		}
	  for(int j=1;j<=n;j++)
	  {
	  	if(i==j) continue;
	  	double mul=c[j][i]/c[i][i];
	  	for(int k=1;k<=n;k++) c[j][k]-=c[i][k]*mul;
	  	b[j]-=b[i]*mul;
	  }
	}
	for(int i=1;i<=n;i++) printf("%.3lf ",b[i]/c[i][i]);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值