洛谷·[JSOI2008]球形空间产生器

初见安~这里是传送门:洛谷P4035 [JSOI2008]球形空间产生器

题解

所求球心必然是一个n维的坐标,满足任意两点到该点的距离相等,即:

\sum_{i=1}^n(a_i-x_i)^2=\sum_{i=1}^n(b_i-x_i)^2

这样我们至少可以通过n+1个点得到n个方程式,解这n个x的值。那就很显然是高斯消元解n元一次方程了。

这个式子我们可以化简一下。两边展开:

\sum_{i=1}^na_i^2-b_i^2=2x_i\sum_{i=1}^n(a_i-b_i)

所以最后方程式就是这样的:

2\sum_{i=1}^n(a_i-b_i)*x_i=\sum_{i=1}^na_i^2-b_i^2

好了上代码。

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#include<map>
#define maxn 100
using namespace std;
typedef long double ld;

int n;
ld a[maxn][maxn], p[maxn][maxn], b[maxn];
signed main() {
	scanf("%d", &n);
	for(int i = 1; i <= n + 1; i++) for(int j = 1; j <= n; j++) scanf("%Lf", &a[i][j]);
	for(int i = 1; i <= n; i++) for(int j = 1; j <= n; j++) 
		p[i][j] = 2 * (a[i][j] - a[i + 1][j]), b[i] += a[i][j] * a[i][j] - a[i + 1][j] * a[i + 1][j];
		
	for(int i = 1; i <= n; i++) {//高斯消元套路
		for(int j = 1; j <= n; j++) if(j != i) p[i][j] /= p[i][i]; b[i] /= p[i][i];
		p[i][i] = 1;
		for(int j = 1; j <= n; j++) if(j != i) {
			for(int k = 1; k <= n; k++) if(k != i) p[j][k] -= p[i][k] * p[j][i];
			b[j] -= b[i] * p[j][i]; p[j][i] = 0;
		}
	}
	for(int i = 1; i <= n; i++) printf("%.3Lf ", b[i]);
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值