初见安~这里是传送门:洛谷P4035 [JSOI2008]球形空间产生器
题解
所求球心必然是一个n维的坐标,满足任意两点到该点的距离相等,即:
这样我们至少可以通过n+1个点得到n个方程式,解这n个x的值。那就很显然是高斯消元解n元一次方程了。
这个式子我们可以化简一下。两边展开:
所以最后方程式就是这样的:
好了上代码。
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#include<map>
#define maxn 100
using namespace std;
typedef long double ld;
int n;
ld a[maxn][maxn], p[maxn][maxn], b[maxn];
signed main() {
scanf("%d", &n);
for(int i = 1; i <= n + 1; i++) for(int j = 1; j <= n; j++) scanf("%Lf", &a[i][j]);
for(int i = 1; i <= n; i++) for(int j = 1; j <= n; j++)
p[i][j] = 2 * (a[i][j] - a[i + 1][j]), b[i] += a[i][j] * a[i][j] - a[i + 1][j] * a[i + 1][j];
for(int i = 1; i <= n; i++) {//高斯消元套路
for(int j = 1; j <= n; j++) if(j != i) p[i][j] /= p[i][i]; b[i] /= p[i][i];
p[i][i] = 1;
for(int j = 1; j <= n; j++) if(j != i) {
for(int k = 1; k <= n; k++) if(k != i) p[j][k] -= p[i][k] * p[j][i];
b[j] -= b[i] * p[j][i]; p[j][i] = 0;
}
}
for(int i = 1; i <= n; i++) printf("%.3Lf ", b[i]);
return 0;
}