使用R语言绘制层次聚类热图

本文介绍了如何使用R语言中的pheatmap包来创建美观的热图。通过实例展示了如何生成一个20行10列的随机正态分布矩阵,并利用pheatmap函数进行绘制,调整热图的维度和外观,提供更精细的控制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

### 使用 Chiplot 绘制 ANI 聚类 为了使用 `chiplot` 库绘制平均核苷酸同一性(ANI)聚类,首先需要准备两个主要部分: 1. **安装必要的软件包** 2. **准备输入文件** #### 安装必要软件包 确保已经安装了 Python 的 `pandas`, `numpy`, 和 `matplotlib` 包以及 `chiplot` 工具本身。可以通过 pip 来完成这些依赖项的安装。 ```bash pip install pandas numpy matplotlib seaborn chiplot ``` #### 准备输入文件 通常情况下,ANI 计算的结果会保存在一个矩阵形式的 CSV 文件中,其中每一行和列代表不同的基因组样本,单元格中的数值表示两者之间的 ANI 百分比相似度得分。 假设有一个名为 `ani_matrix.csv` 的文件如下所示: | GenomeA | GenomeB | GenomeC | |--|---------| | 1 | 0.9 | 0.85 | | 0.9 | 1 | 0.87 | | 0.85 | 0.87 | 1 | 此表格展示了不同基因组间的 ANI 值。 #### 示例代码及参数说明 下面是一个简单的例子展示如何加载上述格式的数据并通过 `chiplot` 进行可视化。 ```python import pandas as pd from chiplot import heatmap # 加载ANI数据 df_ani = pd.read_csv('path/to/your/ani_matrix.csv', index_col=0) # 设置绘尺寸 plt.figure(figsize=(10, 8)) # 创建 sns_heatmap = heatmap(df_ani, cmap="YlGnBu", # 颜色方案 square=True, # 是否保持方形单元格 annot=True, # 显示具体数值 fmt='.2f', # 数字显示格式 cbar_kws={"shrink": .5} # 控制颜色条宽度 ) # 添加标题 plt.title('Average Nucleotide Identity Heatmap') # 展示形 plt.show() ``` 这段脚本将会读入指定路径下的 ANI 结果表,并利用 Seaborn 中集成的功能创建一个美观易懂的来直观呈现各个样品间的关系[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值