R 语言分组聚类的热图

本文介绍了R语言中如何处理热图的分组聚类问题。当基因表达模式在不同组间无明显区别时,聚类可能不匹配组信息。通过调整基因数量或使用complexheatmap,可以实现组内聚类,并展示样本规律。示例代码展示了如何取消列聚类以及创建带有注释条和分组标签的美观热图。
摘要由CSDN通过智能技术生成

应该是会经常遇到这样的热图,就是说它的聚类情况无法与分组信息吻合。

其实这个并不是错了,是因为用于聚类的行(选出的这部分基因)的表达模式在两组之间没有明显区别。

只要改变基因数量,或者换一组基因,聚类树就有可能变得和分组吻合。

假如你尝试换了很多次还是没有办法让它们变得吻合,那就取消聚类。直接使用热图的参数cluster_cols = F即可。

图就会变成:

取消了列聚类,那么热图列的顺序就会按照矩阵列的顺序排布了。那当样本数量多起来的时候,组内的数据规律就无法清晰的展示。

所以会需要组内聚类这样的操作咯。这个只能用complexheatmap来实现,我还顺便找到了注释条加分组标签的画法,变得比常规热图好看一丢。

ComplexHeatmap 是一个在 R 语言中用于制作复杂热图的软件包。在制作复杂热图时,分组聚类是一个非常重要的步骤,可以将矩阵中的样本或变量进行聚类,并将其按照一定的顺序排列,使得热图更加易于观察和解释。 下面是使用 ComplexHeatmap 进行分组聚类的基本步骤: 1. 导入数据并进行必要的预处理,例如标准化、去除缺失值等。 2. 使用 `dist()` 函数计算样本或变量之间的距离。 3. 使用 `hclust()` 函数进行层次聚类,并指定所需的聚类方法和距离度量。 4. 使用 `row_order` 或 `column_order` 参数将矩阵中的行或列按照聚类结果排序。 5. 使用 `Heatmap()` 函数制作热图,并将上一步得到的排序结果作为参数传递给 `row_order` 或 `column_order`。 例如,以下代码展示了如何使用 ComplexHeatmap 进行分组聚类: ```r library(ComplexHeatmap) # 导入数据并进行必要的预处理 data <- read.table("data.txt", header=TRUE, row.names=1) data_norm <- t(scale(t(data))) # 对行进行标准化 # 计算样本之间的距离并进行层次聚类 dist_mat <- dist(data_norm, method="euclidean") hc_res <- hclust(dist_mat, method="complete") # 将行按照聚类结果排序,并制作热图 Heatmap(data_norm, name="Expression", row_order=hc_res$order, show_row_names=FALSE) ``` 这段代码将导入一个名为 "data.txt" 的数据集,并对其进行行标准化。然后,使用 Euclidean 距离计算样本之间的距离,使用 Complete linkage 进行层次聚类。最后,将行按照聚类结果排序,并制作热图
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mrrunsen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值