MaskRCNN在linux服务器上搭建

1、安装Anaconda3

在这里插入图片描述
配置环境变量
在这里插入图片描述最后一行加入如下配置:
在这里插入图片描述
保存后退出,然后执行文件
在这里插入图片描述

2、在Anaconda下配置自己的MaskRCNN环境

在这里插入图片描述

3、安装依赖包 pip install numpy

在这里插入图片描述

4、克隆安装Mask_RCNN

在这里插入图片描述

5、安装pycocotools

在这里插入图片描述
cd到cocoapi文件夹中
然后
python setup.py build_ext --inplace
python setup.py build_ext install

6、验证pycocotools是否安装成功

进入ipython解释器:
在这里插入图片描述
重新输入import COCO命令:
在这里插入图片描述

7、下载coco预训练的权重

https://github.com/matterport/Mask RCNN/releases]

下载mask_rcnn_coco.h5
放在Mask_RCNN目标下

8、运行Mask_RCNN案例

进入Mask_RCNN目录
在这里插入图片描述
打开jupyter notebook
在这里插入图片描述
点击进入 samples目录,点击demo.ipynp进入代码运行页面(如图)。
在这里插入图片描述
在这里插入图片描述
选择 Cell 菜单,在 Cell下拉菜单选择 Run All,稍等片刻,在该页面底部会输出运行结果。
在这里插入图片描述
在这里插入图片描述

  • 0
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
在Windows下配置 maskrcnn-benchmark 环境需要遵循以下步骤: 1. 首先,确保计算机已安装好 Python3 和 CUDA。如果没有,请先安装这些依赖项。 2. 在命令行中使用 Git 命令克隆 maskrcnn-benchmark 仓库。可以使用以下命令: ``` git clone https://github.com/facebookresearch/maskrcnn-benchmark.git ``` 3. 进入克隆的仓库目录: ``` cd maskrcnn-benchmark ``` 4. 使用以下命令创建并激活 Python 虚拟环境: ``` python -m venv .env .env\Scripts\activate ``` 5. 安装 PyTorch。可以从 PyTorch 官方网站选择适合你的 CUDA 和操作系统的版本进行安装。例如,如果你的 CUDA 版本是 10.1,可以使用以下命令安装: ``` pip install torch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 -f https://download.pytorch.org/whl/cu101/torch_stable.html ``` 6. 安装依赖项。运行以下命令来安装所需的依赖项: ``` pip install -r requirements.txt ``` 7. 编译 maskrcnn_benchmark。运行以下命令完成编译: ``` python setup.py build develop ``` 8. 配置 COCO API(可选)。如果你想在 COCO 数据集上进行训练和评估,可以安装 COCO API。在命令行中运行以下命令: ``` pip install cython; pip install 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI' ``` 9. 最后,测试安装是否成功。可以运行以下命令执行一个简单的示例: ``` python demo/demo.py ``` 按照以上步骤配置 maskrcnn-benchmark 环境后,你将能够在 Windows 下使用该库进行目标检测和实例分割任务。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值