【Agent】Coze个人智能体助手搭建(agent | workflow)

note

  • 工作流是全局的,智能体是局部的。
  • 适合workflow的场景的特点:
    • (1)重复性工作多 :业务中的任务或流程高度重复。
    • (2)业务流程固定 :步骤相对固定,且具有标准化的操作流程。
  • coze工作流支持通过可视化的方式,对插件、大语言模型、代码块等功能模块进行组合,从而实现复杂、稳定的业务流程编排。当目标任务场景包含较多的步骤,且对输出结果的准确性、格式有严格要求时,适合配置工作流来实现。

一、Agent和工作流的区别

智能体(AI Agent)

  • 是什么:智能体是一个自动化的“助手”,用来执行特定任务。就像你设置一个闹钟,它帮你在指定时间提醒你。
  • 能做什么:它擅长做一些具体的、重复性的任务,比如客服聊天、推荐商品、处理订单等。
  • 缺点:它只能按照预先设定的规则和任务来做事,如果遇到超出范围的情况,它就不知道怎么办了。

工作流(Workflow)

  • 是什么:工作流是一系列任务的流程,决定了每个步骤应该做什么,就像一本操作指南,告诉你从头到尾要怎么做。
  • 能做什么:工作流可以处理一个完整的过程,比如从客户下单、付款到发货和售后服务,涵盖了所有步骤和环节。
  • 优点:它更灵活,能够适应变化。你可以调整步骤和规则来应对不同的情况,不需要一开始就固定下来。

区别总结

  • 智能体是特定任务的“助手”,用于局部执行任务。
  • 工作流是一个“计划”或“路线图”,指导整个任务的流程。

二、适合workflow的场景

适合workflow的场景的特点:
(1)重复性工作多 :业务中的任务或流程高度重复。
(2)业务流程固定 :步骤相对固定,且具有标准化的操作流程。

例子:媒体工作者的日常任务包括更新内容、获取播放量、获得关注和客户线索。常见的工作流步骤如下,该工作流包含大量的重复性任务 (如内容创作、编辑、发布)和 固定的业务流程 (如策划、创作、审核、发布):

1. 内容策划(市场调研 + 创意构思)

2. 内容创作(素材收集 + 内容制作)

3. 内容编辑(初步编辑 + 设计排版)

4. 内容审核

5. 内容发布

6. 互动 (RPA)

7. 效果分析和优化

三、Coze平台

特点:多种插件、丰富数据源、持久化记忆能力

直接在coze平台点击【扣子助手】,输入【我想要一个英语口语陪练搭子bot】后coze可以自动创建智能体,可以进行对话,coze也能自动把prompt生成:

# 角色
你是一位专业的英语口语陪练智能体,具备丰富的知识和出色的语言能力,能够随时与用户开启各类话题的英语交流,助力用户有效提升英语口语水平。

## 技能
### 技能 1: 开启英语交流
1. 当用户准备开始练习英语口语时,主动开启一个常见且有趣的话题,例如日常活动、兴趣爱好、热门文化等,引导用户用英语进行回应。
2. 交流过程中,根据用户的回应自然地延续话题,不断深入交流,保持对话的流畅性和连贯性。

### 技能 2: 语言纠正与指导
1. 在交流过程中,仔细留意用户英语表达中的语法错误、词汇使用不当、发音不准确等问题。
2. 以温和、友好的方式指出错误,并给出正确的表达方式和解释,帮助用户理解和改进。

### 技能 3: 拓展语言表达
1. 在用户表达观点后,提供更多相关的词汇、短语或句式,丰富用户的表达方式,提升语言运用能力。
2. 鼓励用户运用新学的表达进行再次阐述或拓展话题。

## 限制
- 仅使用英语进行交流,拒绝用其他语言回复。
- 交流内容围绕提升英语口语能力展开,不涉及无关话题。
- 回答需简洁明了,易于理解。  

可以灵活设置知识、工作流、插件等选项:
在这里插入图片描述

详细了解:第三章,https://www.datawhale.cn/learn/content/105/3261

四、工作流

coze工作流支持通过可视化的方式,对插件、大语言模型、代码块等功能模块进行组合,从而实现复杂、稳定的业务流程编排。当目标任务场景包含较多的步骤,且对输出结果的准确性、格式有严格要求时,适合配置工作流来实现。

比如旅游出行助手,分两条路(天气查询、攻略查询)完成后再数据合并,很简单的工作流:
在这里插入图片描述
稍微更复杂的就是行研报告生成:
在这里插入图片描述

1. 规划阶段:

概括关键任务制定策略,明确任务目标和实施方式。

将整体任务细分为易于管理的子任务,确立它们之间的逻辑顺序和相互依赖关系。

为每个子任务规划具体的执行方案。

这部分可以说是最重要的部分,明确你究竟要什么东西

举例:如何用 coze 搭建一套高水准自动化 xx 赛道小红书内容生产线

我们先来一步一步确认目标

总任务:小红书内容自动产出
输出标准:爆款标题+文案+配图
子任务 1:生成爆款标题
子任务 2:生成配图
子任务 3:生成发布文案

其中,子任务 1 又分为:热门话题抓取+改写,子任务 2 又会使用到图片工作流。

在总目标和最终输出的标准下,我们要完成拆解。并确定子任务之间相互的逻辑顺序。

2. 执行阶段:

逐步开发和测试 的各项功能。

在 Coze 平台上搭建工作流架构,设定各节点间的逻辑联系。

细致配置各个子任务节点,并确保每个子任务的有效性。
在这里插入图片描述

3. 完善阶段:

全面检验并提升工作流的效果。

对工作流进行整体试运行,找出功能实现和性能表现上的瓶颈。

通过持续的测试和迭代过程,不断优化,直至满足预定的性能标准。

在这个阶段,你已经把工作流运用在业务中了。你即将迎来一系列的新问题:

跑了,这个选题的数据不好,需要更换热门话题信息源;

跑了,这个类型的图片点击率不高,需要更换新风格;

跑了,这 LLM 说话的风格太僵硬,不够自然;

跑了,数据太好私域承接不过来…

搭建工作流是种树,完善维护工作流是养树。

Reference

[1] https://www.datawhale.cn/learn/content/105/3329

<think>好的,我需要回答用户关于Agent Workflow的实际应用案例及实现方式的问题。首先,我得回顾一下用户提供的引用内容,看看有哪些相关的信息可以整合进来。 根据引用[2],Agent Workflow在工业制造中有应用,提到了算法原理、数学模型和具体场景。引用[3]提到了无人驾驶系统中的实现,具体有PerceptionAgent、LocalizationAgent等。引用[4]提到了动态和静态编排的区别,引用[5]则涉及计算资源和成本的问题。 用户需要的是实际应用案例和实现方法,所以应该分两部分来回答。应用案例方面,工业制造和无人驾驶是已经提到的,可能还可以补充其他领域,比如客服或者物流,但需要确保引用中的内容支持。实现方式方面,需要涵盖架构设计、通信机制、编排方式(静态/动态)、资源优化等。 要注意使用正确的LaTeX格式,行内公式用$...$,独立公式用$$...$$,不过当前问题可能数学内容不多,但如果有的话需要正确应用。例如,在资源优化部分,如果有提到数学模型,如任务调度的公式,可能需要展示。比如,任务调度模型可以用$$T = \sum_{i=1}^{n} t_i$$表示总时间,其中$t_i$是每个任务的时间。 然后,生成相关问题,需要围绕用户的问题扩展,可能涉及优化方法、具体行业案例比较、动态编排的挑战等。 现在需要确保回答结构清晰,分点列出应用案例和实现方式,每个部分都引用对应的引用内容。比如在工业制造部分引用[2],无人驾驶引用[3],动态编排引用[4],资源优化引用[5]。 最后检查是否符合所有系统级指令,特别是LaTeX的正确使用和中文字符的正确性,以及引用标识的正确添加。</think>### Agent Workflow实际应用案例及实现方式 #### 一、实际应用场景 1. **工业制造** 在工业制造中,Agent Workflow用于协调生产线上的多机器人协作。例如,通过$Q_{\text{learning}}$算法优化任务分配,动态调整设备参数以提升良品率[^2]。具体场景包括: - 质量检测Agent识别缺陷 - 设备维护Agent预测故障 - 物流调度Agent优化物料运输路径 2. **无人驾驶系统** 如引用[3]所述,无人驾驶系统通过分层Agent实现: - **感知Agent**:处理传感器数据,如目标检测模型$y=f_{\text{CNN}}(x)$ - **定位Agent**:基于SLAM算法构建地图 - **规划Agent**:使用A*算法生成安全路径 - **控制Agent**:PID控制器实现精准转向 3. **智能客服系统** 通过多Agent协作处理复杂咨询流程: - 意图识别Agent分类用户问题 - 知识库检索Agent匹配答案 - 情感分析Agent优化响应策略 #### 二、实现方法 1. **分层架构设计** 采用$$ \text{系统} = \bigcup_{i=1}^{n}(\text{Agent}_i \otimes \text{通信接口}_i) $$的模块化结构,每个Agent独立封装特定功能[^3]。 2. **通信机制** - **消息队列**:如RabbitMQ实现异步通信 - **RPC调用**:gRPC框架保障实时性 - **共享内存**:适用于高吞吐量场景 3. **动态编排策略** 基于强化学习的动态调度模型: $$ \pi^*(s) = \arg\max_a \sum_{s'} P(s'|s,a)[R(s,a) + \gamma V(s')] $$ 其中$\gamma$为折扣因子,用于平衡即时与长期收益[^4]。 4. **资源优化** 采用容器化部署(如Kubernetes),通过自动扩缩容算法: $$ N_{\text{node}} = \lceil \frac{\sum w_i}{C_{\text{pod}}} \rceil $$ 其中$w_i$为任务负载,$C_{\text{pod}}$为单容器处理能力[^5]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

山顶夕景

小哥哥给我买个零食可好

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值