正态分布、正态分布采样及Python实现

多元正态分布(多元高斯分布)

直接从多元正态分布讲起。多元正态分布公式如下:
P r = 1 ( 2 π ) D / 2 ∣ ∑ ∣ 1 / 2 e x p ( − 0.5 ( x − μ ) T ∑ − 1 ( x − μ ) ) ) P_r = \frac{1}{(2\pi )^{D/2}\left | \sum \right |^{1/2}}exp(-0.5(x-\mu)^T{\sum} ^{-1}(x-\mu))) Pr=(2π)D/21/21exp(0.5(xμ)T1(xμ)))

其中 μ \mu μ代表每个维度上的均值,是一个 D × 1 D\times 1 D×1维的向量,而 ∑ \sum 代表协方差矩阵,是一个 D × D D\times D D×D正定矩阵。上述公式可简写为: P r ( x ) = N o r m x [ μ , ∑ ] P_r(x)=Norm_x[\mu,\sum] Pr(x)=Normx[μ,]这就是多元正态分布的定义,均值好理解,就是高斯分布的概率分布值最大的位置,进行采样时也就是采样的中心点。而协方差矩阵在多维上形式较多。

协方差矩阵

一般来说,协方差矩阵有三种形式,分别称为球形、对角和全协方差。以二元为例:
∑ s p h e r = ( σ 2 0 0 σ 2 ) {\sum}_{spher}=\begin{pmatrix} \sigma ^2 & 0\\ 0 & \sigma ^2 \end{pmatrix} spher=(σ200σ2) ∑ d i a g = ( σ 1 2 0 0 σ 2 2 ) {\sum}_{diag}=\begin{pmatrix} \sigma_1 ^2 & 0\\ 0 & \sigma_2 ^2 \end{pmatrix} diag=(σ1200σ22) ∑ f u l l = ( σ 11 2 σ 12 2 σ 21 2 σ 22 2 ) {\sum}_{full}=\begin{pmatrix} \sigma_{11} ^2 & \sigma_{12} ^2\\ \sigma_{21} ^2 & \sigma_{22} ^2 \end{pmatrix} full=(σ112σ212σ122σ222)

对于N元正态分布有: ∑ = ( c o v ( X 1 , X 1 ) c o v ( X 1 , X 2 ) ⋯ c o v ( X 1 , X n ) c o v ( X 2 , X 1 ) c o v ( X 2 , X 2 ) ⋯ c o v ( X 2 , X n ) ⋮ ⋮ ⋮ ⋮ c o v ( X n , X 1 ) c o v ( X n , X 2 ) ⋯ c o v ( X n , X n ) ) {\sum}=\begin{pmatrix} cov(X_1,X_1) & cov(X_1,X_2) & \cdots & cov(X1,X_n)\\ cov(X_2,X_1) & cov(X_2,X_2) & \cdots & cov(X_2,X_n) \\ \vdots & \vdots & \vdots & \vdots\\ cov(X_n,X_1) & cov(X_n,X_2) & \cdots & cov(X_n,X_n) \end{pmatrix} =cov(X1,X1)cov(X2,X1)cov(Xn,X1)cov(X1,X2)cov(X2,X2)cov(Xn,X2)cov(X1,Xn)cov(X2,Xn)cov(Xn,Xn)
为了方便展示不同协方差矩阵的效果,我们以二维为例。(书上截的图,凑活着看吧,是在不想画图了)

在这里插入图片描述

其实从这个图上可以很好的看出,协方差矩阵对正态分布的影响,也就很好明白了这三个协方差矩阵是哪里来的名字了。可以看出,球形协方差矩阵,会产生圆形(二维)或者球形(三维)的等高线,对角协方差矩阵和全协方差矩阵,会产生椭圆形的等高线。更一般地,在一个D维空间中,球形协方差矩阵,会产生一个D维球面等高线;对角协方差矩阵,会产生一个坐标轴对其的椭球型等高线;全协方差矩阵,会在任意位置产生一个坐标轴对其的椭球型等高线。

当协方差矩阵是球形的或者是对角的,单独的变量之间是独立的

协方差分解

时间不足,具体解释以后再补

下面是协方差分解的原理图


在这里插入图片描述

变量的线性变换(正态分布采样原理)

多元正态的形式在线性变换 y = A x + b y=Ax+b y=Ax+b下保持不变,例如下图:


在这里插入图片描述

假设原始分布是 P r ( x ) = N o r m x [ μ , ∑ ] P_r(x)=Norm_x[\mu,\sum] Pr(x)=Normx[μ,]
那么经过 y = A x + b y=Ax+b y=Ax+b变换后,变量y的分布为: P r ( y ) = N o r m y [ A μ + b , A ∑ A T ] P_r(y)=Norm_y[A\mu+b,A\sum A^T] Pr(y)=Normy[Aμ+b,AAT]

这个关系提供了从均值为 μ \mu μ、协方差为 ∑ \sum 的正态分布抽取样本的简单方法。首先从单位正态分布中,抽取样本 x x x,然后应用 y = ∑ 1 / 2 x + μ y={\sum}^{1/2}x+\mu y=1/2x+μ进行变换

python实现

多元正态分布在python的numpy库中有很方便一个函数:

np.random.multivariate_normal(mean=mean, cov=conv, size=N)

这个函数中,mean代表均值,是在每个维度中的均值。cov代表协方差矩阵,就像上面讲的那种形式,协方差矩阵值的大小将决定采样范围的大小。size代表需要采样生成的点数,此时输出大小为(N*D)的坐标矩阵。

另外,其他参数包括:check_valid,这个参数用于决定当cov即协方差矩阵不是半正定矩阵时程序的处理方式,它一共有三个值:warn,raise以及ignore。当使用warn作为传入的参数时,如果cov不是半正定的程序会输出警告但仍旧会得到结果;当使用raise作为传入的参数时,如果cov不是半正定的程序会报错且不会计算出结果;当使用ignore时忽略这个问题即无论cov是否为半正定的都会计算出结果

tol:检查协方差矩阵奇异值时的公差,float类型。

下面是一个小demo

import numpy as np
import matplotlib.pyplot as plt

mean = np.array([2,1])              # 均值
conv = np.array([[0.5, 0.0],        # 协方差矩阵
                 [0.0, 0.5]])
axis = np.random.multivariate_normal(mean=mean, cov=conv, size=200)
x, y = np.random.multivariate_normal(mean=mean, cov=conv, size=1000).T

# print(axis[:])

plt.plot(axis[:, 0], axis[:, 1], 'ro')
plt.show()
plt.plot(x, y, 'ro')
plt.show()

注意,单独取出每个坐标轴的坐标数组时,需要在最后加上.T,否则会报错 效果展示:


在这里插入图片描述
在这里插入图片描述

协方差值的大小对采样的影响:

mean = np.array([2,1])              # 均值
conv = np.array([[0.5, 0.0],        # 协方差矩阵
                 [0.0, 0.5]])

conv2 = np.array([[10, 0.0],        # 协方差矩阵
                 [0.0, 10]])
axis = np.random.multivariate_normal(mean=mean, cov=conv, size=200)
x, y = np.random.multivariate_normal(mean=mean, cov=conv2, size=200).T

# print(axis[:])

plt.plot(axis[:, 0], axis[:, 1], 'ro')
plt.show()
plt.plot(x, y, 'ro')
plt.show()


效果如下:


在这里插入图片描述
在这里插入图片描述

这里没有设定随机种子店,每次随机数会有所不同。

参考文献

《 计算机视觉模型、学习和推理》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值