该理论探讨的是模型在training set上的error 与 generation error的关系。 训练模型时,需要多少个样本,达到什么精度,都是由理论依据的。
理论点:
- 偏差方差权衡(Bias/variance tradeoff)
- 训练误差和一般误差(Training error & generation error)
- 经验风险最小化(Empiried risk minization,ERM)
- 联合界引理和Hoeffding不等式(Union bound & Hoeffding inequality)
- Uniform Convergence(一致收敛)
- 有限与无限假设类的讨论(Discuss on finite and infinite hypothesis class)
一、偏差方差权衡
1. 偏差与方差
回顾之前在讨论线性回归问题时,通常存在以下三种情况:
- 图1,用一条直线拟合一个呈现二次结构的散点,无论训练样本怎样增多,一次函数都无法准确地表示出二次函数。我们认为它具有高偏差(high bias),表现出欠拟合(underfit)。
- 图3,用一条五次多项式函数来拟合数据,对于数据的结果,得到的仍然不是一个好的模型,算法拟合出了数据中的一些奇怪规律。我们认为它具有高方差(high variance),表现出过拟合(overfit)。
- 图2,用一条二次函数来拟合数据,很显然能够匹配数据集合的一般规律。
偏差与方差之间存在某种平衡。如果模型过于简单且参数较少,它可能有高偏差(低方差);相反,如果模型过于复杂且参数众多,它可能有高方差(低偏差)。它们之间究竟存在怎样的关系呢?为了说明这个问题,先要提出一个更为一般的机器学习模型——经验风险最小化,在正式介绍该模型之前,需要对两个引理有所了解来帮助理解。
2. 两个引理
为了解释偏差方差权衡现象,需要引出两个引理:联合界引理和Hoeffding不等式。
(1)联合界引理
这个引理常作为概率论的公理,k个事件中任意事件发生的概率最多为每个事件独立发生的概率之和。其中,事件可能发生,也可能不发生。
(2)Hoeffding不等式 (霍夫丁不等式)
这个引理在学习理论中也称为Chernoff边界(Chernoff bound),给出了一种估计伯努利随机变量均值时,错误概率的上界。关于这个上界有个很有意思的结论:随着样本数目m增大,高斯分布的凸性会随之收缩,也就是高斯分布的尾部会变小,中间隆起。举个例子,当你投掷一枚两面的硬币,人像面朝上的概率为Φ,在投掷m次(m足够大)后,计算人像面朝上的次数是一种很好的估计Φ值的方法(用频率去估计概率)。
3. 两个误差
介绍两个学习理论中十分重要的概念:训练误差与一般误差。
(1)训练误差
考虑二元分类y∈{0,1},给定训练集合S={(x(i),y(i));i=1,2,...,m},各个训练样本服从独立同分布D,对于一个假设模型 h,我们定义训练误差(Training error),也叫作经验风险(empirical risk)或经验误差(empirical error):
(2)一般误差