bzoj1007 [HNOI2008]水平可见直线

Description

  在xoy直角坐标平面上有n条直线L1,L2,…Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为
可见的,否则Li为被覆盖的.
例如,对于直线:
L1:y=x; L2:y=-x; L3:y=0
则L1和L2是可见的,L3是被覆盖的.
给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线.

Input

  第一行为N(0 < N < 50000),接下来的N行输入Ai,Bi

Output

  从小到大输出可见直线的编号,两两中间用空格隔开,最后一个数字后面也必须有个空格

Sample Input

3

-1 0

1 0

0 0
Sample Output

1 2
HINT

..打的时候各种小错误。。我的正确率啊!!

分析:肯定是先按照斜率从小到大排序,然后按照截距从大到小,因为斜率相同,截距小的肯定被覆盖了。
然后先把前两条线加入队列,每次枚举的线i,如果i与s[top]的交点在s[top-1]和s[top]交点的左边或者重合,s[top]肯定被覆盖了,然后把栈顶元素弹出。如此往复,最后栈中的元素就是最终的答案。

为什么是这么做?因为s[top]与s[top-1]的交点左边,s[top]已经被s[top-1]覆盖了,如果i和s[top]的交点还在这个点左边,那么这个点右边的s[top]都会被遮住。

#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cmath>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
using namespace std;
int n,m;
const int N=1e6+6;
struct node
{
    double k,b;
    int id;
}a[N];
int s[N];
bool cmp(node a,node b)
{
    if (a.k==b.k)return a.b>b.b;
    else return a.k<b.k;
}
inline double getpos(node a,node b)
{
    return (b.b-a.b)/(a.k-b.k);
}
bool ans[N];
int main()
{
    scanf("%d",&n);
    fo(i,1,n)
    {
        scanf("%lf%lf",&a[i].k,&a[i].b);
        a[i].id=i;
    }
    sort(a+1,a+1+n,cmp);
    int top=1;
    s[1]=1;
    fo(i,2,n)
    {
        if (a[i].k-a[i-1].k< 1e-8)continue;
        while(top>1&&getpos(a[i],a[s[top]])<=getpos(a[s[top]],a[s[top-1]]))top--;
        s[++top]=i;
    }
    fo(i,1,top)ans[a[s[i]].id]=1;
    fo(i,1,n)
    if (ans[i])printf("%d ",i);
    return 0;

}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值