初等复变函数

1. 指数函数

(1)定义
e z = e x ( c o s   y + i   s i n   y ) e^z = e^x(cos~y+i~sin ~y) ez=ex(cos y+i sin y)
在这里插入图片描述


欧 拉 公 式 : e i θ = c o s θ + i   s i n θ 欧拉公式:e^{i\theta} = cos\theta + i~sin\theta eiθ=cosθ+i sinθ


(2)运算法则

  1. 乘 法 : e z 1 ⋅ e z 2 = e z 1 + z 2 乘法:e^{z_1}·e^{z_2} = e^{z_1 + z_2} ez1ez2=ez1+z2
  2. 除 法 : e z 1 ⋅ e z 2 = e z 1 + z 2 除法:e^{z_1}·e^{z_2} = e^{z_1 + z_2} ez1ez2=ez1+z2

(3) 性质

  1. e z 在 全 平 面 上 解 析 e^z在全平面上解析 ez
  2. ∣ e z ∣ = e x |e^z| = e^x ez=ex
  3. A r g   e z = y + 2 k π Arg~e^z = y + 2k\pi Arg ez=y+2kπ
  4. e z ≠ 0 e^z ≠ 0 ez=0
  5. e z + 2 k π i = e z , 以 2 k π i 为 周 期 的 函 数 e^{z + 2k\pi i} = e^z,以2k\pi i为周期的函数 ez+2kπi=ez2kπi
  6. 当 z 趋 于 ∞ 时 , e z 没 有 极 限 当z趋于\infty时,e^z没有极限 zez

当z延实轴区域负无穷,极限为0

2. 对数函数

(1)定义
ω = L n   z = l n ∣ z ∣ + i A r g z . \omega = Ln~z = ln|z| + iArgz. ω=Ln z=lnz+iArgz.
l n   z = l n ∣ z ∣ + i a g r z ln~z = ln|z| +iagrz ln z=lnz+iagrz
(2)运算法则

  1. 加 法 : L n   z 1 + L n   z 2 = L n   z 1 z 2 加法:Ln~z_1 + Ln~z_2 = Ln~z_1z_2 Ln z1+Ln z2=Ln z1z2
  2. 减 法 : 减法:

(3) 性质

l n   z 在 除 原 点 及 负 实 轴 的 平 面 内 解 析 。 ln~z在除原点及负实轴的平面内解析。 ln z

L n   z 在 除 原 点 及 负 实 轴 的 平 面 内 解 析 。 Ln~z在除原点及负实轴的平面内解析。 Ln z

3. 幂函数

(1)定义
z α = e α L n z z^\alpha = e^{\alpha Lnz} zα=eαLnz
规 定 : 当 α 为 正 实 数 且 z = 0 时 , z α = 0 规定:当\alpha为正实数且z=0时,z^\alpha = 0 αz=0zα=0

(2)性质
在这里插入图片描述
在这里插入图片描述

4. 三角函数

定义
c o s   z = 1 2 ( e i z + e − i z ) ; cos~z = \frac{1}{2}(e^{iz} + e^{-iz}); cos z=21(eiz+eiz);

s i n   z = 1 2 i ( e i z − e − i z ) ; sin~z = \frac{1}{2i}(e^{iz}-e^{-iz}); sin z=2i1(eizeiz);

t a n   z = s i n   z c o s   z , tan~z = \frac{sin~z}{cos~z}, tan z=cos zsin z,

c o t   z = c o s   z s i n   z , cot~z = \frac{cos~z}{sin~z}, cot z=sin zcos z,

s e z   z = 1 c o s   z , sez~z = \frac{1}{cos~z}, sez z=cos z1,

c s c   z = 1 s i n   z . csc~z = \frac{1}{sin~z}. csc z=sin z1.

性质
c o s   z 和 s i n   z 均 为 单 值 函 数 ; cos~z和sin~z均为单值函数; cos zsin z
c o s   z 和 s i n   z 均 为 以 2 π 为 周 期 的 周 期 函 数 ; cos~z和sin~z均为以2\pi为周期的周期函数; cos zsin z2π
c o s   z 为 偶 函 数 , s i n   z 为 奇 函 数 cos~z为偶函数,sin~z为奇函数 cos zsin z
c o s ( z 1 + z 2 ) = cos(z_1 + z_2)= cos(z1+z2)=
s i n ( z 1 + z 2 ) = sin(z_1 + z_2) = sin(z1+z2)=
s i n 2 z + c o s 2 z = 1. sin^2z + cos^2z = 1. sin2z+cos2z=1.

5. 反三角函数

定义
A r c s i n   z = − i L n ( i z + 1 − z 2 ) ; Arcsin~z =-iLn(iz+\sqrt{1-z^2}); Arcsin z=iLn(iz+1z2 );
A r c t a n   z = i 2 L n i + z i − z . Arctan~z = \frac{i}{2}Ln\frac{i+z}{i-z}. Arctan z=2iLnizi+z.

6. 双曲函数

定义
s h   z = e z − e − z 2 sh~z = \frac{e^z - e^{-z}}{2} sh z=2ezez
c h   z = e z + e − z 2 ch~z = \frac{e^z + e^{-z}}{2} ch z=2ez+ez
c h   z = e z − e − z e z + e − z ch~z = \frac{e^z - e^{-z}}{e^z + e^{-z}} ch z=ez+ezezez
c o t h   z = e z + e − z e z − e − z coth~z = \frac{e^z + e^{-z}}{e^z - e^{-z}} coth z=ezezez+ez
在这里插入图片描述

性质

7. 反双曲函数

定义
A r s h   z = L n ( z + z 2 + 1 ) Arsh~z=Ln(z + \sqrt{z^2+1}) Arsh z=Ln(z+z2+1 )
A r s h   z = L n ( z + z 2 − 1 ) Arsh~z=Ln(z + \sqrt{z^2-1}) Arsh z=Ln(z+z21 )
A r t h   z = 1 2 L n   1 + z 1 − z Arth~z=\frac{1}{2}Ln~\frac{1+z}{1-z} Arth z=21Ln 1z1+z
A r c o t h   z = 1 2 L n z + 1 z − 1 Arcoth~z = \frac{1}{2}Ln\frac{z+1}{z-1} Arcoth z=21Lnz1z+1
在这里插入图片描述

性质

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值